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ABSTRACT
This study presents a comprehensive examination of monthly rainfall data collected in Chittoor district

of Andhra Pradesh from January 1990 to December 2022. The primary objective is to develop an accurate
predictive model for future rainfall patterns using time-series forecasting techniques. Traditional AutoRegressive
Integrated Moving Average (ARIMA) models have been extensively applied in climate studies due to their
effectiveness in capturing linear trends However, ARIMA models often fail to account for seasonal variations
inherent in rainfall data. To address this limitation, the QS Test was conducted to determine the presence of
seasonality, revealing strong periodic fluctuations in monthly precipitation patterns. Based on this validation, a
Seasonal ARIMA (SARIMA) model SARIMA(1,0,1)(1,1,1)[12] was developed and compared against
ARIMA(0,0,3)(2,0,0)[12] to assess forecasting accuracy. Model selection was guided by key statistical indicators
such as AIC, RMSE, MAE, and residual diagnostics. The SARIMA model demonstrated superior residual
independence (p = 0.6631), confirming improved white noise behavior and seasonal pattern detection. Additionally,
SARIMA achieved a lower AIC (4256.71), RMSE (57.63), and MAE (36.58) compared to ARIMA, reinforcing
its enhanced forecasting capabilities.
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The state of Andhra Pradesh, located in
southern India, is a prime example of an agricultural
economy that is reliant on rainfall. Chittoor district,
situated in the southern part of the state, is known for
its diverse agricultural production, including crops such
as groundnuts, paddy, and horticultural crops such as
mangoes and bananas. To address the need for reliable
rainfall prediction in Chittoor district, this study
employs an autoregressive integrated moving average
model to forecast monthly rainfall patterns.

The precision of rainfall forecasting plays a
critical role in the efficient management of water
resources, agricultural planning, and preparedness for
natural disasters. Researchers have extensively applied
time series models to predict precipitation patterns,
with ARIMA and its derivatives proving particularly
effective. In their study, Rodrigues and Deshpande
(2017) examined rainfall prediction across all states
in India using ARIMA and Multiple Linear Regression
(MLR) models. Their findings indicated that ARIMA
performed exceptionally well for short-term forecasts,
while MLR effectively captured long-term trends,

thereby demonstrating the poten study, Lama et al.
(2021) conducted monthly rainfall forecasts for the
Sub-Himalayan region using SARIMA and TDNN
models. Their findings revealed that SARIMA was
well-suited for capturing seasonal patterns, while
TDNN exhibited superior accuracy in predicting non-
linear trends. This research underscores the
importance of employing flexible forecasting
techniques in regions with complex topography.

The Box-Jenkins ARIMA methodology
remains a popular choice for time series data modeling
due to its proven reliability. In a notable application,
Ogbozige (2022) utilized an ARIMA(2,1,2) model
to analyze 50 years of monthly rainfall data in Calabar,
Nigeria. The study yielded precise forecasts, further
validating the effectiveness of the Box-Jenkins
approach in hydrological research. In a comparable
context, the research conducted by Sathish et al.
(2017) employed SARIMA to examine monthly
precipitation patterns in Gangetic West Bengal. This
approach effectively captured seasonal fluctuations,
contributing to improved water resource management



and disaster readiness. Furthermore, investigations
utilizing seasonal extensions of ARIMA models have
yielded promising results across various geographical
areas. For instance, Amelia et al. (2022) implemented
SARIMAX for rainfall prediction in Pangkalpinang
City, integrating external variables to improve
forecasting precision.

Seasonal ARIMA modeling has been
employed in diverse regional studies to analyze climate
patterns. Ashwini et al. (2021) utilized this approach
to examine monsoon rainfall in Tamil Nadu, effectively
capturing the seasonal fluctuations characteristic of the
area. Similarly, Dimri et al. (2020) applied Seasonal
ARIMA to investigate climate variables in Uttarakhand,
demonstrating the model’s efficacy in handling complex
seasonal trends.In addition to these applications,
researchers have begun exploring sophisticated hybrid
models to enhance the accuracy of climate forecasts.

The integration of SARIMA with GARCH by
Pandey et al. (2018) led to improved rainfall prediction
accuracy in Agartala and Jodhpur, effectively
addressing both seasonality and volatility. In a similar
vein, Unnikrishnan et al. (2020) constructed a hybrid
SSA-ARIMA-ANN model, which exhibited high
precision in forecasting daily rainfall. Furthermore,
Pham et al. (2019) employed hybrid data-intelligence
algorithms across various stations in Vietnam, yielding
accurate rainfall predictions and providing additional
evidence for the effectiveness of hybrid methodologies.

Comparative studies have highlighted the
performance of traditional and hybrid models. In a
comparative study, Barman et al. (2020) evaluated
the efficacy of AR, MA, and ARMA models for rainfall
forecasting in Assam and Meghalaya, with results
indicating the ARMA model’s superior performance.
The application of the SERIMA model for weekly
rainfall predictions in Junagadh, Gujarat, by Damor et
al. (2023) yielded accurate short-term forecasts.
Additionally, Khan et al. (2023) examined the ARIMA
model’s effectiveness for both short- and long-term
rainfall forecasting in the Klang River Basin, confirming
its applicability across various temporal scales.
Machine learning approaches are also gaining traction
for rainfall prediction. The research conducted by K.B.
et al. (2024) utilized machine learning algorithms to
model precipitation patterns in Kerala, demonstrating
superior predictive capabilities through the application
of data-driven approaches. This paradigm shift
towards machine learning methodologies represents

a significant development in rainfall forecasting,
emphasizing the synergistic potential of combining
conventional and cutting-edge techniques. The
substantial body of literature accentuates the
adaptability and efficacy of ARIMA and its variants
in precipitation prediction. Moreover, it demonstrates
the increasing focus on hybrid and machine learning
approaches, facilitating more precise and robust
forecasting capabilities. This investigation builds upon
these findings by delving into advanced temporal
sequence models and integrated methodologies for
rainfall prediction across varied geographical contexts.

MATERIAL  AND METHODS
Stationary Test
 Augmented Dickey–Fuller (ADF) Test

The ADF test was applied to check for
stationarity in the time-series data. The null hypothesis
of the ADF test states that the series has a unit root
(i.e., it is nonstationary). A stationary time series is a
prerequisite for ARIMA modeling. In this study, the
ADF test confirmed whether the monthly rainfall data
required differencing to be stationary. The following

model was used for the ADF test.

where    is the difference time series,   is the

trend term, and  is the error term.

Box-Jenken’s Methodology
 The Box-Jenkins methodology provides a
robust framework for the identification, estimation,
and diagnostic checking of Autoregressive Integrated
Moving Average models in time-series
forecasting(Ogbozige, 2022). This study employs the
Box-Jenkins approach to analyze monthly rainfall data
collected in Chittoor District from January 1990 to
December 2022.

The initial stage of model identification
involved assessing the stationarity of the time series.
If trends or seasonality are detected within the data,
differencing techniques are applied to induce
stationarity. The autocorrelation and partial
autocorrelation function plots serve as valuable tools
for identifying the appropriate autoregressive and
moving average terms for the model(Davis &

Δ𝑌𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑌𝑡−1 + ෍ 𝛿𝑖
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Rappoport, 1974).The first and foremost step is to
determine the order of differencing (d) to stationarise
the series. The order of differencing (d) is selected
such that it minimizes the standard deviation. This is
done by fitting different ARIMA models having various
orders of differencing, but a constant coefficient is
selected.(Dimri, T etal ., 2020)Following the
identification of the ARIMA model parameters, a
Maximum Likelihood Estimation was employed to
estimate the model. A comprehensive residual analysis
was then conducted to ascertain whether the residuals
of the fitted model exhibited the characteristics of white
noise. The model adequacy was confirmed if the
residuals demonstrated independence and normality.
The subsequent section of this paper focuses on
evaluating the performance of the selected ARIMA
model using a range of statistical metrics, the ARIMA
models include autoregressive (AR), moving averages
(MA), and integrated processes.

The general form of the ARIMA (p,d,q) given
below

Autoregressive Model(AR)

Moving Averages(MA) (q);

The general form of ARIMA model(p d q) is

Where ‘p’ is order of autoregressive process, ‘q’ is
order of moving average process, and  ‘d ’ is order of
differencing the series to make it stationary.

Seasonal ARIMA (SARIMA) Model
The Seasonal Autoregressive Integrated Moving
Average (SARIMA) model extends the ARIMA
model by incorporating seasonal components to better
model time series data that exhibit
periodic behavior. A SARIMA model is typically
denoted as: SARIMA (p, d, q) (P, D, Q)s

The general SARIMA model equation is
expressed as

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝 𝑌𝑡−𝑝 + 𝜖𝑡  

                                                      ----------(1) 

𝑌𝑡 = 𝜇 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞 𝜖𝑡−𝑞  

                                                                ---------- (2) 

𝜙(𝐵)(1 − 𝐵)𝑑 𝑌𝑡 = 𝜃(𝐵)𝜖𝑡                    ---------- (3) 

𝛷𝑃(𝐵𝑠)𝜙𝑝 (𝐵)(1 − 𝐵)𝑑 (1 − 𝐵𝑠)𝐷𝑌𝑡 = 
                             𝛩𝑄(𝐵𝑠)𝜃𝑞 (𝐵)𝜖𝑡   ------------ (4) 

 

Model Performance Evolutiona. A k a i k e

Information Criterion (AIC)
The Akaike Information Criterion (AIC)

serves as a robust tool for comparing model
performance by incorporating both the goodness-of-
fit and model complexity. A lower AIC value indicates
a better trade-off between accuracy and simplicity.
In the present study, SARIMA models outperformed
traditional ARIMA models, with the
SARIMA(1,0,1)(1,1,1)[12] model achieving the
lowest AIC of 4256.71, followed closely by
SARIMA(1,0,2)(0,1,1)[12] at 4256.84 and
SARIMA(0,0,2)(2,1,1)[12] at 4258.61. In contrast,
the best-performing ARIMA model,
ARIMA(0,0,3)(2,0,0)[12], recorded a significantly
higher AIC of 4473.77. These results underscore the
importance of incorporating seasonal components in
modeling, as SARIMA models provided more
parsimonious fits to the rainfall data in Chittoor.

Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC),
like AIC, rewards model accuracy while penalizing
complexity more strongly, making it especially useful
when model simplicity is prioritized. In this study, the
SARIMA(1,0,1)(1,1,1)[12] model also achieved the
lowest BIC value of 4276.46, further validating its
efficiency and appropriateness for seasonal rainfall
prediction. Compared to this, the BIC values for
alternative SARIMA models such as SARIMA(0,0,2)
and SARIMA(1,0,2) were marginally higher
(4282.31 and 4276.60 respectively), and notably
higher in ARIMA modelssuch as 4501.64 for
ARIMA(0,0,3) and 4537.71 for ARIMA(1,0,0).
This further strengthens the case for SARIMA as the
optimal modeling approach in seasonal rainfall
forecasting.

Mean Absolute Error (MAE):
Mean Absolute Error (MAE) provides an

intuitive measure of average prediction error without
penalizing large deviations as heavily as RMSE. It is
especially valuable for understanding the general
forecasting accuracy of a model. In this analysis, the
SARIMA(0,0,2)(2,1,1)[12] model achieved the

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛൫𝐿෠൯  
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lowest MAE of 36.35, followed closely by
SARIMA(1,0,1)(1,1,1)[12] at 36.58 and
SARIMA(2,0,2)(1,1,1)[12] at 36.67. Conversely,
the ARIMA models displayed substantially higher
MAEs, with ARIMA(0,0,3)(2,0,0)[12] registering
47.25. This again highlights the superiority of
SARIMA models in handling seasonally influenced
time series like rainfall, offering more precise and
consistent forecasting performance. Represents the
average of absolute differences between forecasted
and actual values.

Root Mean Square Error (RMSE)
Root Mean Square Error (RMSE) is a widely

used metric that quantifies the standard deviation of
prediction errors, emphasizing larger errors due to
squaring. A lower RMSE indicates better model
accuracy. Among all models tested,
SARIMA(0,0,2)(2,1,1)[12] exhibited the lowest
RMSE of 57.52, closely followed by
SARIMA(1,0,1)(1,1,1)[12] with 57.63. In contrast,
the best ARIMA model, ARIMA(0,0,3)(2,0,0)[12],
produced a significantly higher RMSE of 68.16. These
findings clearly demonstrate that SARIMA models—
particularly those with well-specified seasonal
components—are more adept at minimizing forecast
errors and improving predictive reliability.

RESULTS AND DISCUSSIONS
Analysis of monthly rainfall data (measured

in millimeters) for Chittoor District from January 1990
to December 2022 revealed distinct seasonal patterns.
The most substantial rainfall occurred during October
and November, coinciding with the northeast monsoon
season. Boxplot analysis illustrated considerable
rainfall variability during these months, as evidenced
by higher medians and wider interquartile
ranges(Fig1). Conversely, rainfall was significantly
lower from January to May, with negligible amounts
recorded in certain years, underscoring the strong
seasonal dependence of rainfall in this region.

Visual analysis of monthly rainfall data from
January 1990 to December 2022, encompassing ap-
proximately 400 months (33 years), revealed several
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Fig.1. Monthly wise rainfall in Chittoor District
           in Andhra Pradesh
key characteristics. The time series exhibited signifi-
cant fluctuations with periodic spikes indicating months
of heavy rainfall. These cyclical patterns suggest a dis-
tinct seasonal component that likely corresponds to
the monsoon season. Notably, a few extreme peaks
were observed, representing outliers characterized by
exceptionally high rainfall compared to the overall data
distribution. These observations highlight the inherent
variability and periodicity within rainfall data, which
are crucial factors to consider when developing fore-
casting models. The cyclical nature of the time series,
as depicted in (Fig 2), supports the use of a time se-
ries model, such as ARIMA, which can effectively
capture both trend and seasonality for improved pre-
diction accuracy.

Fig.2. Rainfall trend in Chittoor District of
           Andhra Pradesh

The Autocorrelation Function plot illustrates
the correlation between rainfall values and their past
values at different time lags. The presence of significant
spikes exceeding the confidence intervals at early lags
(e.g., 1, 4, 6, and 10) indicates substantial
autocorrelation within the data. The periodic nature
of these spikes suggests a potential seasonal pattern,
possibly linked to the monsoon cycles. This
observation aligns with the expectation of seasonality
in the rainfall data. The gradual decay of
autocorrelation over time further supports this
hypothesis.

Conversely, the Partial Autocorrelation
Function plot reveals the correlation between the time
series and its lags, after accounting for the influence
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of intermediate lags. The significant spike at the first
lag, followed by scattered significant spikes at lag six
and beyond, suggests that the rainfall data may be
effectively modeled using autoregressive terms. PACF
is particularly useful in determining the appropriate
number of AR terms for an ARIMA model. The
gradual decay observed in the Autocorrelation
Function plot suggests the presence of potential
autoregressive terms, indicating that past rainfall values
have a persistent influence on the current values.
Significant spikes at lower lags in the Partial
Autocorrelation Function plot further support this
finding, suggesting that incorporating a few AR terms
could enhance the accuracy of the model. Given these
observations, a combination of AR and Moving
Average terms, likely in the form of an ARMA or
ARIMA model, appears suitable for modeling the
rainfall data. This model should also account for
seasonality, as suggested by the ACF Plot (Fig 3).
These plots are crucial for determining the optimal
parameters (p, d, q) for the ARIMA models, which
are essential for generating accurate rainfall predictions
based on historical patterns.

Fig.3. ACF and PACF for rainfall data
The Autocorrelation Function (ACF) and

Partial Autocorrelation Function (PACF) plots
provide essential insights into the residual behavior of
the ARIMA model, helping to assess whether the
model has effectively accounted for time-dependent
structures within the rainfall data.
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Fig.4.ARIMA Residual analysis for rainfall
         data

The residual time series plot shows random
distribution around zero, indicating the model has
captured overall trends and dependencies. However,
spikes suggest it may struggle with extreme rainfall
fluctuations and monsoonal effects. The ACF plot
shows correlation between residuals at different lags.
Most spikes fall within confidence intervals, indicating
removed temporal dependencies, though some
exceed bounds at higher lags, suggesting unaccounted
seasonal effects. The PACF plot helps determine
autoregressive terms needed. Significant spikes at
early lags confirm the need for autoregressive
components, while sharp cutoff after few lags indicates
effective short-term dependency modeling. The
residuals histogram evaluates error distribution, ideally
showing normal distribution around zero. Residuals
form a bell-shaped curve, showing good alignment
with rainfall patterns, though a slight rightward skew
indicates under-prediction of heavy rainfall events,
suggesting possible need for additional seasonal
components.

Table 1: ARIMA Model Performance Metrics,
different ARIMA (p d q) models

Model
Order 
(p,d,q)

AIC BIC RMSE MAE

ARIMA
(0,0,3)

(0,0,3) 4473.77 4501.64 68.16 47.25

ARIMA
(1,0,0)

(1,0,0) 4525.77 4537.71 73.83 54.78

ARIMA
(2,0,1)

(2,0,1) 4528.19 4548.09 73.68 54.59

ARIMA
(4,0,1)

(4,0,1) 4484.86 4512.73 69.35 49.01

To evaluate various ARIMA configurations
for forecasting monthly rainfall, multiple models with
different autoregressive, differencing, and moving
average parameters were compared. Table 1
summarizes performance metrics including AIC, BIC,
RMSE, and MAE for seasonal and non-seasonal
ARIMA models. The seasonal
ARIMA(0,0,3)(2,0,0)[12] outperformed non-
seasonal counterparts, recording the lowest AIC
(4473.77) and BIC (4501.64), indicating better model
fit. This model achieved the lowest RMSE (68.16)
and MAE (47.25), suggesting more precise
predictions. Non-seasonal models, including
ARIMA(1,0,0), ARIMA(2,0,1), and ARIMA(4,0,1),
showed higher error rates, with even ARIMA(4,0,1)’s
competitive AIC (4484.86) unable to surpass the
seasonal model’s performance. These results confirm
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seasonal patterns in rainfall data and justify adopting
SARIMA for enhanced prediction.

Table 2: ARIMA Forecasted Rainfall for 2023

The QS (Quasi-Seasonal) Test is used to
statistically determine the presence of seasonal patterns
in time series data. It is particularly useful before fitting
seasonal models like SARIMA.

Null Hypothesis (H
0
): No seasonal pattern

exists. Alternative Hypothesis (H
1
): Seasonality is

present. If the p-value < 0.05, we reject the null
hypothesis, indicating significant seasonality in the data.
This test aids in justifying the use of SARIMA over
non-seasonal ARIMA.

Table 3: QS Test for Seasonality

To determine seasonality in monthly rainfall
data from Chittoor district (1990–2022), the QS
(Quasi-Seasonal) test was employed. The test yielded
a statistic of 12.71 with p-value 0.00174. Since the
p-value is below 0.05, we reject the null hypothesis
of no seasonality, providing strong evidence of
seasonality in the rainfall series. This detection validates
using seasonal SARIMA over non-seasonal ARIMA
models.

Month
Point 

Forecast 
(mm)

95% 
Confidence 

Interval 
(Lower–Upper)

Jan-23 64 [-70.6, 198.6]

Feb-23 52.3 [-84.8, 189.4]

Mar-23 49 [-89.3, 187.3]

Apr-23 51.6 [-87.0, 190.2]

May-23 89.7 [-48.9, 228.3]

Jun-23 97.4 [-41.2, 236.0]

Jul-23 115.2 [-23.4, 253.8]

Aug-23 132.9 [-5.7, 271.5]

Sep-23 109.4 [-29.2, 248.0]

Oct-23 118.6 [-20.0, 257.2]

Nov-23 184.3 [45.6, 322.9]

Dec-23 107.2 [-31.4, 245.8]

Test Used Test Statistic P-value 

QS Test 12.71 0.00174 

 

Table 4: Different SARIMA (p d q) models,
   Model Performance Metrics

Model
Order 
(p,d,q)

Seasonal 
(P,D,Q)[s]

AIC BIC RMSE MAE

SARIMA
(1,0,1)

(1,0,1) (1,1,1)[12] 4256.7 4276.5 57.63 36.58

SARIMA
(2,0,1)

(2,0,1) (1,1,0)[12] 4386.9 4406.7 71.83 45.1

SARIMA
(0,0,2)

(0,0,2) (2,1,1)[12] 4258.6 4282.3 57.52 36.35

SARIMA
(1,0,2)

(1,0,2) (0,1,1)[12] 4256.8 4276.6 57.69 36.72

SARIMA
(2,0,2)

(2,0,2) (1,1,1)[12] 4260.4 4288 57.61 36.67

SARIMA Model Summary
Since QS Test confirmed seasonality,

SARIMA models were tested to improve forecast
accuracy.

To capture seasonal dynamics in monthly
rainfall patterns, several Seasonal ARIMA (SARIMA)
models were tested. Table 3 presents model
performance using key indicators: AIC, BIC, RMSE,
and MAE. The SARIMA(1,0,1)(1,1,1)[12] model
emerged as the most robust, recording the lowest AIC
(4256.71) and BIC (4276.46) values, indicating
optimal model fit. This model achieved low RMSE
(57.63) and MAE (36.58) scores, reflecting high
predictive accuracy. SARIMA(0,0,2)(2,1,1)[12] and
SARIMA(1,0,2)(0,1,1)[12] showed similar RMSE
and MAE values but higher AIC and BIC, while
S A R I M A ( 2 , 0 , 1 ) ( 1 , 1 , 0 ) [ 1 2 ] a n d
SARIMA(2,0,2)(1,1,1)[12] displayed higher error
metrics. The performance metrics favor
SARIMA(1,0,1)(1,1,1)[12] as the optimal model for
seasonal rainfall forecasting in Chittoor, Andhra

 Fig.5.SARIMA Residual analysis for rainfall

           data
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Pradesh, making it excellent for reliable monthly rainfall
predictions crucial for agricultural and water
management decisions.

The residual time series plot shows randomly
distributed residuals around zero, indicating the
SARIMA(1,0,1)(1,1,1)[12] model effectively
captures trends and seasonal patterns in rainfall data.
Unlike ARIMA, SARIMA accounts for periodic
dependencies from monsoonal effects. Some small
residual spikes suggest under-prediction during high-
rainfall months. The ACF plot examines residual
correlation across lags to ensure past errors don’t
influence future predictions. Most residual spikes lie
within confidence intervals, confirming SARIMA
removes major temporal dependencies, though minor
spikes at higher lags suggest residual autocorrelation.
The SARIMA model shows improved seasonal
corrections versus ARIMA, supported by the Ljung-
Box test (p = 0.6631). The PACF plot’s early-lag
spikes confirm the necessity of autoregressive
components, with SARIMA’s AR(1) term effectively
modeling rainfall dependencies. A sharp cutoff after
few lags indicates proper handling of seasonal
dependencies. The residual histogram shows a bell-
shaped curve centered at zero, confirming SARIMA’s
alignment with rainfall trends. Minimal skewness
compared to ARIMA suggests fewer forecasting
errors, though slight rightward skew indicates
occasional under-prediction during peak rainfall
months. This improved residual behavior
demonstrates SARIMA’s stronger forecasting
capability.

Month
Point 

Forecast 
(mm)

95% Confidence 
Interval 

(Lower–Upper)

Jan-23 15.1 [-101.9, 132.2]

Feb-23 11.8 [-105.7, 129.3]

Mar-23 14.4 [-103.3, 132.2]

Apr-23 27.9 [-89.9, 145.8]

May-23 69.6 [-48.3, 187.5]

Jun-23 83.6 [-34.3, 201.5]

Jul-23 104.3 [-13.7, 222.2]

Aug-23 121.2 [3.3, 239.2]

Sep-23 142.2 [24.2, 260.1]

Oct-23 173.8 [55.8, 291.7]

Nov-23 167.1 [49.1, 285.0]

Dec-23 68 [-50.0, 186.0]

Fig.6. Forecast value of rainfall data

 

 

Table 6: Residual Diagnostics

Model
Ljung-
Box Q 
Statistic

p-value

ARIMA(0,0,3) 
(2,0,0)[12]

46.85 0.00038

SARIMA(1,0,1)
(1,1,1)[12]

16.84 0.6631

Residual diagnostics assessed the

fitted models by testing for autocorrelation in forecast
errors. The Ljung-Box Q statistic and p-values indicate
whether residuals behave like white noise—essential
for reliable time series forecasting. The
ARIMA(0,0,3)(2,0,0)[12] model’s Q statistic of
46.85 with p-value 0.000375 showed significant
residual autocorrelation, indicating incomplete pattern
capture. The SARIMA(1,0,1)(1,1,1)[12] model’s Q

Table 5: SARIMA Forecasted Rainfall for
              2023
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statistic of 16.84 with p-value 0.6631 indicated
statistically independent residuals, meeting white noise
assumptions and successfully accounting for time-
dependent structures in rainfall data.

CONCLUSION
The findings of this study confirm the

significance of incorporating seasonal effects in rainfall
forecasting through the QS test, which identified strong
periodic patterns in the data. Comparisons between
ARIMA and SARIMA models demonstrated that
SARIMA(1,0,1)(1,1,1)[12] outperformed
ARIMA(0,0,3)(2,0,0)[12], achieving lower AIC
(4256.71), RMSE (57.63), and MAE (36.58),
thereby enhancing predictive reliability. Furthermore,
Ljung-Box test results (p = 0.6631 for SARIMA)
indicate residual independence, proving that SARIMA
effectively captures rainfall trends without significant
autocorrelation. Forecasted rainfall values highlight
SARIMA’s superior ability to model seasonal
fluctuations, providing narrower confidence intervals
and more stable predictions compared to ARIMA.
These results reinforce SARIMA’s suitability for
monthly rainfall forecasting in Chittoor, supporting
more informed environmental and agricultural decision-
making. Future research could explore hybrid
approaches, such as integrating machine learning
models with SARIMA, to further optimize predictive
performance in climate forecasting applications.
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