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ABSTRACT
Malnutrition affects a large proportion of

population, and has emerged as a serious health issue
worldwide. Besides affecting growth and development
in humans, malnutrition also contributes to poor socio-
economic development. Maize is one of the most
important cereal crops, and used as an important source
of food and feed, thereby provides valuable source
energy. However, traditional maize is poor in nutritional
qualities. Essential amino acids like lysine and
tryptophan, vitamins such as vitamin-A and vitamin-E,
and minerals like iron (Fe) and zinc (Zn) are present in
low concentration in maize kernels. Recessive genes
like opaque2 and opaque16 enhance lysine and
tryptophan, while natural variants of crtRB1 and lcyE
increase the concentration of vitamin-A in maize kernel.
In addition, mutant vte4 gene causes enhancement in
vitamin-E, while mutated versions of lpa1 and lpa2
reduce phytic acid thereby enhance the bioavailability
of Fe and Zn in the maize grains. Availability of
molecular markers provide opportunity to undertake
molecular breeding for accelerating the breeding cycle
and development of biofortified maize hybrids. Here,
we presented the status of prospects of development
of biofortified maize hybrids through molecular
breeding with a special reference to India. We also
presented various challenges and opportunities to
popularize the newly developed nutritionally enriched

maize hybrids.

Keywords: Biofortification, Maize, minerals,
molecular marker ,  protein and vitamins.

Malnutrition caused due to consumption of
unbalanced food affects people throughout the globe
(Duo et al., 2024). It leads to increased morbidity,
disability, abnormal physical and mental health, and
contributes to poor socio-economic development
worldwide (Hossain et al., 2023). Continued intake
of poor quality diet can lead to different forms of
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malnutrition, including under-nutrition, micronutrient
deficiencies, overweight and obesity (WHO, 2023;
Neeraja et al., 2022). Nearly, 3.1 billion global
populations can not afford healthy food, of which 735
million people are hungry (FAO, IFAD, UNICEF,
WFP and WHO, 2023). Globally, 148.1 million
(22.3%) children (<5 years) are stunted, while 45
million (6.8%) children possess wasting and 37 million
(5.6%) children are affected by obesity. Under
nutrition causes ~45% death among children (<5
years) mainly in low and middle-income countries.
Malnutrition is so widespread that 88% of the
countries experience a high level of at least two types
of malnutrition, while 29% experience three types of
malnutrition (Global Nutrition Report, 2018).
Considering the paramount importance of alleviating
malnutrition, world leaders at United Nations framed
‘Sustainable Development Goals’ (SDGs) for meeting
the current needs without affecting future generations
(UNDESA, 2023). Of the 17, 12 goals are highly
associated with nutrition. Alleviating malnutrition is the
most cost-effective step as every $1 invested in proven
nutrition programme offers benefits worth $16 (Global
Food Policy Report, 2016). Thus, balanced and
nutritious diet for people assumes great significance
to mitigate malnutrition (Gupta et al., 2015). Various
approaches used to ensure nutrition are food-
fortification, medical-supplementation, and dietary-
diversification to alleviate the micronutrient
malnutrition. However, these avenues are not
sustainable in the long run, and their implementation
is often limited by lack of purchasing power, poor
infrastructure, crop seasonality, expense, and lower
bioavailability (vaan Lieshout and de Pee 2005; Bouis
and Welch, 2010). ‘Crop biofortification’ – a process
of increasing nutrient density in edible seeds through
breeding, has emerged as the most promising
approach. Compared to other approaches,
biofortification offers several advantages viz., (i) most
sustainable (ii) cost-effective, and (iii) provides
nutrients in natural form to alleviate malnutrition
(Pfeiffer and McClafferty, 2007; Yadava et al., 2018).

Maize has emerged as the most important
cereal crop of the globe (Erenstein et al., 2022; Gao
et al., 2024). Apart from food and feed usage, maize
also provides raw materials to corn syrup, emulsifier,
textile-, paper- and adhesive- industries (Talukder et
al., 2023). It is grown across North America and
South America, Africa, Asia and Europe that touched

production of 1163.49 mt from 203.47 mha area and
productivity of 5.71 t/ha (FAOSTAT, 2022). In India
as well, maize is an important crop with a production
of 38.08 mt from an area of 10.74 mha with a
productivity of 3.55 t/ha during 2022-23
(www.upaj.gov.in). In India, maize is used by the
poultry sector (47%), livestock (13%), food (13%),
starch industries (14%), processed food (7%),
exports and others (6%) (Rakshit et al., 2019).
However, traditional maize grain is poor in nutritional
qualities such as protein quality (lysine and
tryptophan), provitamin-A, vitamin-E, iron (Fe) and
zinc (Zn) (Neeraja et al., 2022). Availability of
molecular markers associated with the target genes
for nutritional quality provides great opportunity to
accelerate the breeding cycle by involving nearly the
half of the time required in conventional breeding
(Table 1). Besides, (i) the selection of the target gene
is more precise, (ii) the lengthy progeny testing can
be avoided, (iii) desirable plants can be selected at
the seedling stage thereby saves resources, and (iv)
the high cost involved in phenotyping of the segregating
populations is also reduced drastically. Here, we
present the status of genomics-assisted breeding
programmes on maize biofortification in India.
Lysine and tryptophan

Traditional maize endosperm protein is
deficient in lysine and tryptophan, which is less than
half of the recommended dose specified for human
nutrition (Vasal, 2001). Lysine and tryptophan serve
as precursors for several neuro-transmitters and
metabolic regulators, and their deficiency leads to
reduced appetite, delayed growth, impaired skeletal
development and aberrant behaviour in humans
(Yadava et al., 2022). The recessive allele of the
Opaque2 (O2) gene located on chromosome-7
causes doubling of lysine and tryptophan. It was first
described by Jones and Singleton in early 1920s
(Emerson, et al., 1935), but its nutritional significance
was discovered by Mertz et al. (1964) at Purdue
university, USA. The α-zeins are the most abundant
proteins in the endosperm but characteristically poor
in essential amino acids viz., lysine and tryptophan.
The homozygous o2 mutant causes a decrease of the
production of zeins resulting in a corresponding
increase in non-zein proteins, which naturally contain
higher levels of lysine and tryptophan (Gibbon and
Larkins, 2005). The o2 gene encodes a basic-domain-
leucine-zipper (bZIP) transcription factor that



2023 Nutritional enrichment of maize through molecular breeding           421

regulates the expression of the 22 kDa α-zein and
several other genes. Mutation at the o2 locus encodes
the defective regulatory element resulting in reduced
transcription of the 19 kDa and 22 kDa α-zein genes.
The 19 kDa and 22 kDa α-zeins constitute almost
70% of the total maize endosperm zeins and the
reduction in α-zein transcription results in reduction
of zein proteins relative to non-zeins. The o2 gene
also regulates the lysine ketoglutarate reductase (LKR)
gene (Schmidt et al., 1987). The LKR gene encodes
the protein that degrades the free lysine. The o2
mutation produces a defective transcription factor
resulting in reduced transcription of the LKR and less
degradation of free lysine in a mutant relative to wild-
type (Brochetto-Braga et al., 1992). In addition, it
also balances leucine-isoleucine ratio for tryptophan
liberation which enhances niacin biosynthesis and
combats pellagra disease.

 Lysine and tryptophan levels in maize inbreds
adapted to India have been increased through
introgression of o2 allele into several normal maize
inbreds through conventional as well as molecular
breeding (Gupta et al., 2013). These o2-based simple
sequence repeats (SSR) markers (phi057, phi112
and umc1066) have been used to convert non-QPM
lines into their QPM versions (Hossain et al., 2018).
ICAR-Vivekananda Parvatiya Krishi Anusandhan
Sansthan (VPKAS), Almora, developed ‘Vivek
QPM9’ – a QPM hybrid developed through marker-
assisted selection (MAS), and was released during
2008 (Table 2). In 2017, three QPM hybrids viz.,
‘Pusa HM4 Improved’, ‘Pusa HM8 Improved’ and
‘Pusa HM9 Improved’ were developed by ICAR-
Indian Agricultural Research Institute (IARI), New
Delhi (Hossain et al., 2018). Besides, ‘VL QPM
Hybrid-45’ was released by VPKAS, Almora during
2022, while ‘QPMH-6’ developed by ICAR-Indian
Institute of Maize Research, Ludhiana was released
for commercial cultivation in 2024 (Table 2).

Further, a recessive opaque16 (o16) gene
present on chromosome-8 has also been found to
increase nutritional value in maize (Yang et al., 2005;
Sarika et al., 2017). Mutant combination of o2 and
o16 offers possibility of enhancement of lysine by 40-
80% over o2 genotype alone. Working with o16, we
could conclude that it was as good as o2 mutant in
terms of lysine and tryptophan level, but did not induce
opaqueness –a great advantage to the breeders
(Sarika et al., 2018a). We have also pyramided o2

and o16 in the genetic background of four QPM
hybrids, and found that o2o2/o16o16-based hybrids
possessed an average enhancement of 49% and 60%
in lysine and tryptophan over the original hybrids, with
highest enhancement amounting 64% and 86%,
respectively (Sarika et al., 2018b). Chand et al.
(2022) also observed that o2o2/o16o16-based
hybrids also possessed 51% and 43% higher lysine
and tryptophan, respectively over o2-based checks.

Provitamin-A
Vitamin-A is essential for normal functioning

such as proper visibility, maintenance of cell function,
epithelial integrity, red blood cell production, immunity
and reproductive systems in humans (Sommer and
West, 1996). Vitamin-A deficiency (VAD) affects
about 4.4 million preschool-age children and 20 million
pregnant women across the world
(www.harvestplus.org). Though yellow maize
possesses tremendous natural variation for
carotenoids, it is predominated by lutein and
zeaxanthin (Vignesh et al., 2012, 2013; Muthusamy
et al., 2015a, b, c, 2016). Provitamin-A carotenoids
are present <2 ppm as compared to target level of
15 ppm (Pixley et al., 2013).

Two genes, lycopene epsilon cyclase (lcyE)
on chromosome-8 and β-carotene hydroxylase
(crtRB1) on chromosome-10 have been shown to
regulate the accumulation of provitamin-A
compounds. Naturally available lcyE gene converts
lycopene into ζ-carotene and eventually to α-carotene
through the action of other associated genes.
Favourable lcyE allele forces pathway flux towards
β-carotene branch (Harjes et al., 2008). Though the
favourable lcyE allele increases the proportion of β-
carotene in the pathway, a large amount is
hydroxylated to produce β-cryptoxanthin (with 50%
provitamin A activity) and zeaxanthin (0% provitamin
A activity). crtRB1 is a hydroxylase gene that converts
β-carotene into β-cryptoxanthin. However, naturally
available favourable crtRB1 allele blocks the process
of hydroxylation of β-carotene in to further
components, thereby increases the concentration of
β-carotene in the kernel (Yan et al., 2010).

Due to development and access to reliable
PCR-based gene specific markers for lcyE and
crtRB1 genes, MAS has become an attractive option
for provitamin-A enrichment in maize (Harjes et al.,
2008; Yan et al. 2010; Babu et al. 2013; Zunjare et



al. 2017, 2018a,b,c). Quantifying the provitamin-A
carotenoids of maize samples using high performance
liquid chromatography (HPLC) is difficult, time-
consuming and expensive, and breeding programme
thus would benefit greatly from use of MAS to reduce
the need for phenotypic assays. By selecting for the
favourable alleles of the two key genes viz., lcyE and
crtRB1, provitamin-A concentration can be increased
in the maize endosperm (Babu et al., 2013). Breeders
at IARI, New Delhi, have introgressed the favourable
allele of crtRB1 gene into parents of elite hybrids
adapted to diverse ecological regions of India. The
crtRB1-derived hybrids showed that kernel β-
carotene is as high as 21.7 ppm, compared to 2.6
ppm in the original hybrids (Muthusamy et al., 2014).
This is the ‘first-ever demonstration of conversion
of elite maize hybrids into β-carotene-rich
version’. Later, four QPM hybrids were also
introgressed with crtRB1- and lcyE-favourable alleles
for elevation of provitamin-A (Zunjare et al., 2018a).
The introgressed hybrids showed a mean of 4.5-fold
increase in provitamin-A (range of 9.25-12.88 ppm),
compared to original hybrids (2.14-2.48 ppm).
Provitamin-A rich maize hybrids released in India
included ‘Pusa Vivek Hybrid-27 Improved’ during
2020, and ‘VL Vita’ during 2024 by IARI, New Delhi
and VPKAS, Almora, respectively (Table 2).

Vitamin-E
Vitamin-E or tocopherol is an essential

micronutrient for reproduction and quenches free
radicals in cell membrane. It protects the humans from
cardiovascular disease, Alzheimer disease,
neurological disorder and many age-related
degenerations. Maize kernels are rich in total
tocopherol of which, γ-tocopherol constitutes ~80%
and α-tocopherol accounts ~20% of the total pool.
Due to favourable interaction with the receptor, α-
tocopherol is present 10 times more than γ-tocopherol
in plasma of humans. It is estimated that over 20% of
the examined people both in developed and
developing countries has suboptimal plasma α-
tocopherol. A favourable allele of vte4 (chromosome-
5), coding γ-tocopherol methyl transferase (γ-
TMT) accumulates α-tocopherol by 3.2-fold (Li et
al., 2012). Li et al. (2012) has reported two insertion/
deletions (InDel7 and InDel118) within the gene vte4
involved in tocopherol biosynthesis pathway and an
SNP at 85 kb upstream of vte4 thereby significantly

affecting level of α-tocopherol. InDel118, located 9-
bp upstream of the putative transcription start site,
controls α-tocopherol by regulating vte4 transcript
level, whereas InDel7 by effecting translation efficiency
(Li et al., 2012). Gene-based markers specific to
vte4 provided opportunity to undertake molecular
breeding in maize.

In India, an effort to enhance vitamin-E level
in maize was undertaken at IARI, New Delhi. Four
Indian elite QPM and provitamin-A rich inbreds were
targeted for enhanced vitamin-E to develop multi-
nutrient maize. One of the exotic inbreds with
favourable allele for both the InDels and higher α-
tocopherol, was used as donor for enhancement of
α-tocopherol. Introgression of favourable alleles of
vte4 from donor to the recipient was successfully
carried out by MAS (Das et al., 2018). The vte4-
based reconstituted hybrids showed a 2-fold
enhancement in α-tocopherol (16.83 ppm) over
original hybrids (8.06 ppm) (Das et al., 2021).
‘APTQH-5’ rich in α-tocopherol has been identified
for release, and it is expected to be released for
commercial cultivation in 2024.

Iron and zinc
Humans require iron (Fe) for basic cellular

functions and proper functioning of the muscle, brain
and red blood cells (Roeser, 1986). Zinc (Zn) is an
essential mineral for humans, animals and plants for
many biological functions. It plays a crucial role for
more than 300 enzymes in the human body for the
synthesis and degradation of carbohydrates, lipids,
proteins and nucleic acids (Sandstorm, 1997). Target
of 60 ppm of Fe and 38 ppm of Zn (on dry weight
basis) has been fixed in maize (Bouis and Welch,
2010). Presence of multiple minor loci, high genotype
× environmental interactions and dilution effects in
hybrids pose major challenges to breed for high Fe
and Zn rich maize. Experimental hybrids with 40 ppm
of Fe and 30 ppm of Zn have been identified.

Phytic acid (PA) (myo-inositol-1, 2, 3, 4, 5,
6-hexakisphosphate or InsP6) is a ubiquitous and the
most abundant inositol phosphate found in all the
eukaryotic cells. These phosphate groups impart PA
a strong negative charge at cellular pH, as a result it
tightly binds positively charged monovalent or bivalent
mineral cations to form mixed salts referred to as
phytate or phytin (O’Dell et al., 1972). Owing to
negative charge, PA or InsP

6
 are potent chelators of

422        Firoz Hossain et al.,      AAJ 70



nutritionally important positively charged mineral ions
viz., Fe and Zn. When consumed, dietary PA and its
isomers continue to bind seed derived minerals from
food items, making them unavailable for absorption
in the gut (Raboy, 2020). Extensive research in seed
phytic acid content has led to the isolation of three
lpa mutations in maize namely lpa1, lpa2 and lpa3,
possessing 66%, 50% and 50% less phytic acid
compared to wild types, respectively (Shi et al.,
2005). In low PA mutant (lpa), total phosphorus
content remains the same as in wild type grains,
however PA content is greatly reduced coupled with
proportional increase in free inorganic P (Raboy et
al., 2000). In India, Ragi et al. (2021) developed
lpa1-1-based maize inbreds that possessed 35.8%
lower PA (1.68 mg/g) than the wild-type inbreds (2.61
mg/g). Further, Ragi et al. (2022) reported that lpa2-
1-based mutant inbreds possessed significantly low
mean PA (1.90 mg/g) over wild-type inbreds (2.56
mg/g) with average reduction of 26% PA among lpa2-
1 mutants. Besides, lpa2-2 was successfully
introgressed into regionally well adapted and
productive elite inbred lines through MAS at Tamil
Nadu Agricultural University (TNAU), Coimbatore
(Sureshkumar et al., 2014; Tamilkumar et al., 2014),
respectively. These lines can be used for the
development of hybrids with low PA. Yathish et al.
(2022) introgressed lpa2-2 gene into elite inbreds,
and the introgressed progenies possessed low PA
(2.37-2.40 mg/g in improved inbreds) compared to
3.16-3.59 mg/g in recurrent parents, thereby reducing
the phytate by an average of 24-34%. ‘PMH-1-LP’
developed by IIMR, Ludhiana is a low phytate maize
hybrid released in India during 2022 (Table 2).

Multinutrient-rich maize
Several hybrids with combination of

nutritional quality traits have been developed and
released. ‘Pusa Vivek QPM-9’ (2017) earns the
distinction of being world’s first provitamin-A rich
QPM maize cultivar. Similarly, ‘Pusa HQPM-5
Improved’ (2020), ‘Pusa HQPM-7 Improved’
(2020), ‘Pusa HQPM-1 Improved’ (2021), ‘Pusa
Biofortified Maize Hybrid-1’ (2021), ‘Pusa
Biofortified Maize Hybrid-2’ (2022) and ‘Pusa
Biofortified Maize Hybrid-3’ (2022) were also rich
in protein quality (lysine and tryptophan) and
provitamin-A, and released for commercial cultivation
in India (Table 2). APTQH-5 rich in protein quality,
provitamin-A and vitamin-E have been identified for

release in India. These hybrids have been developed
through molecular breeding approaches.
Challenges and opportunities

Despite great health benefits, QPM cultivars
account for only 1% or less of 90 million hectares
grown in Mexico, Latin America, Sub-Saharan Africa
and Asia (CIMMYT, 2012). India is also not an
exception in this regard despite the availability of
diverse biofortified hybrids. Successful adoption of
biofortified maize cultivars depends on various factors
related to research and development, socio-economic
issues and policy interventions (Gupta et al., 2015).
Some of the factors that warrant urgent attention is
mentioned below.

It is perceived that nutritionally enriched crops
possess low yielding potential. QPM, provitamin-A,
vitamin-E, Fe and Zn do not have any yield penalty,
and nutritionally enriched maize for these traits can
provide grain yield similar to normal maize (Gupta et
al., 2015). MAS-derived QPM, provitamin-A,
vitamin-E and low phytate version of hybrids have
been tested under the AICRP trials, and were found
to be at par with the original versions for grain yield
potential (Muthusamy et al. 2014; Gupta et al., 2015;
Hossain et al., 2018). Germplasm base of
nutritionally enriched maize is quite narrow, primarily
due to the fact that very few breeding centres have
active quality breeding (Hossain et al., 2016).
Therefore, strengthening of research collaborations
among various national partners of the National
Agricultural Research System (NARS) and
international research organizations like CIMMYT
and HarvestPlus would help in sharing novel
germplasm and expertise for the development of
biofortified maize. Establishment of ‘nutritional quality
service labs’ are essential for assessing large number
of segregating progenies in the breeding programme.
Creation of trained human resources for precise
estimation of the nutritional quality is also key to the
success. Further, the effects of micronutrients are
invisible, and farmers would face difficulty in
convincing the trader regarding the extent of quality
of his produce while selling in the market. Hence,
development of a portable device that rapidly
determines the quality would be of great help to the
farmers. Nutrition rich hybrids once pollinated by
pollen from normal maize, show xenia effects leading
to dilution of quality (Gupta et al., 2015). In case of
QPM, xenia effects caused contamination to an extent
of 11% of the total harvest (Ahenkora et al., 1999).
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Growing of trait specific biofortified variety in larger
area would reduce the loss in nutritional quality. Thus,
the requirement of separate post-harvest processing
and storage arrangements for biofortified maize grains
is an essentiality to avoid contamination from normal
maize grains.

Biofortified maize with higher micronutrients
may find important place among health-conscious
urban population, as consumers are ready to pay 20-
70% premium price for the biofortified foods (Steur
et al., 2015). Attractive labelling and suitable branding
highlighting the health benefits on products made from
biofortified maize would help the consumers to choose
more nutritious foods over conventionally available
ones. To meet the industrial requirement, biofortified
maize grains need to be systematically evaluated, and
‘contract farming and buy-back policy’ would ensure
continuous supply of grains to the industry. In Asian
countries including India, 60-70% of the maize is used
as animal feed, and biofortified maize is advantageous
over normal maize. QPM in poultry diet improves
the growth performance of broilers and results in higher
weight gains when replaced with normal maize (Panda
et al., 2013). A study on effect of provitamin-A
biofortified maize diet on meat quality in Ovambo
chickens has been conducted in Africa (Odunitan-
Wayas et al., 2016). The results revealed that the
provitamin-A fed chickens had higher redness and
yellowness and lower lightness in the meat and skin
colour than white maize fed chickens. Further, QPM
and provitaminA enriched diet improved feed
efficiency, reduced abdominal fat and increased breast
muscle in chicken during nursery phase over other
types of maize-based diet (Prakash et al., 2021).
Prakash et al. (2023) also reported beneficial effect
of low phyate maize on bone breaking strength and
intestinal phosphorus transporters in slow growing
chickens during nursery phase. Panda et al. (2012)
further studied the utilization of QPM in the diet of
layers (28-44 weeks), and found that replacement of
normal maize with QPM increased egg production
and improved feed efficiency. Sensitization of poultry
growers on other benefits of biofortified maize on
poultry industry would further help in its
popularization.

Altered phenotypes caused due to
introgression of new trait may prove to be a deterrent
to the easy acceptability of biofortified grains among
consumers. In specific areas including India, white

maize is still preferred, and provitamin-A rich maize
having orange/yellow colour may not be easily
accepted (De Groote et al., 2010). Strong extension
activities may play a major role in the popularization
of biofortified crops. Further, specific training of
extension workers and volunteers, arrangement of
community drama, radio broadcasts, and other
activities such as field days, training for grandmothers
and community leaders, and market promotion events
would help in the promotion of biofortified maize.
Policy supports from the government are essential for
the successful adoption of biofortified maize cultivars
(Gupta et al., 2015). Intensive awareness campaign
supported by the government would help in
popularization of biofortified maize for its nutritional
value. The available biofortified maize can potentially
contribute to the nutritional security especially in the
North-Eastern states and tribal areas in India.
Inclusion of biofortified maize in the government
sponsored programmes like National Food Security
Mission (NFSM), Rashtriya Krishi Vikas Yojna
(RKVY) as well as nutrition intervention programme
such as Integrated Child Development Scheme
(ICDS) and ‘Mid-day meal’ scheme would help in
further popularization (Yadava et al., 2018).
Enhanced minimum support price (MSP) should be
provided to biofortified grains over traditional maize,
as value of the nutritional quality should also be
included while calculating MSP. Intervention such as
creation of ‘Seed village’ would strengthen the seed
chain to produce and supply good quality seeds of
biofortified maize to industry. Providing subsidized
seeds and other inputs would further contribute to
the rapid dissemination of nutritionally improved
cultivars among the farmers.

CONCLUSION
Molecular breeding has led to the accelerated

development of newly developed biofortified maize
hybrids possess higher protein quality (lysine and
tryptophan), vitamins (-A and -E) and bioavailability
of minerals (Fe and Zn). Molecular markers have also
facilitated stacking of multiple traits in the single genetic
background. These biofortified hybrids are also high
yielding, thus at par with the traditional maize. With
proper awareness, quality seed production, effective
linkages with industry and strong policy support, these
biofortified maize hybrids would play a vital role in
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Table 1: Details of nutritional improvement of maize using marker-assisted selection

S. 
No. 

Trait Genes Chromosome Marker type Reference(s) 

1. Lysine and 
Tryptophan 

opaque2 7 Gene-based SSR Gupta et al. (2013) 

2. opaque16 8 Linked SSR Yang et al. (2005) 

3. 
Provitamin-A 

crtRB1 10 Gene-based InDel Yan et al. (2010) 
4. lcyE 8 Gene-based InDel Harjes et al. (2008) 
5. α-tocopherol vte4 5 Gene-based InDel Li et al. (2012) 

6. 

Low phytate 
 

lpa1-1 1 Gene-based SNP Abhijit et al. (2020) 

7. lpa2-1 1 Gene-based CAPS Abhijit et al. (2020) 

8. lpa2-2 1 Linked SSR 
Sureshkumar et al. 

(2014) 

 

Table 2: Details of released biofortified maize hybrids developed through molecular breeding

S. No. Name of hybrid Nutritional traits 
Year of 
release 

Institutions 

1. Vivek QPM9 Lysine + tryptophan 2008 VPKAS, Almora 
2. Pusa HM4 Improved Lysine + tryptophan 2017 IARI, New Delhi 
3. Pusa HM8 Improved Lysine + tryptophan 2017 IARI, New Delhi 
4. Pusa HM9 Improved Lysine + tryptophan 2017 IARI, New Delhi 

5. Pusa Vivek QPM9 Improved 
Lysine + tryptophan + 

Provitamin-A 
2017 IARI, New Delhi 

6. 
Pusa Vivek Hybrid-27 

Improved 
Provitamin-A 2020 IARI, New Delhi 

7. Pusa HQPM7 Improved 
Lysine + tryptophan + 

Provitamin-A 
2020 IARI, New Delhi 

8. Pusa HQPM5 Improved 
Lysine + tryptophan + 

Provitamin-A 
2020 IARI, New Delhi 

9. Pusa HQPM1 Improved 
Lysine + tryptophan + 

Provitamin-A 
2020 IARI, New Delhi 

10. 
Pusa Biofortified Maize 

Hybrid-1 
Lysine + tryptophan + 

Provitamin-A 
2021 IARI, New Delhi 

11. 
Pusa Biofortified Maize 

Hybrid-2 
Lysine + tryptophan + 

Provitamin-A 
2022 IARI, New Delhi 

12. 
Pusa Biofortified Maize 

Hybrid-3 
Lysine + tryptophan + 

Provitamin-A 
2022 IARI, New Delhi 

13. PMH-1-LP Low phytate 2022 IIMR, Ludhiana 
14. VL QPM Hybrid-45 Lysine + tryptophan 2022 VPKAS, Almora 
15. QPMH-6 Lysine + tryptophan 2024 IIMR, Ludhiana 
16. VL Vita Provitamin-A 2024 VPKAS, Almora 
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alleviating malnutrition through sustainable and cost
effective    approach.
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