Journal

Gene Action and Combining Ability Studies in Quality Protein Maize (QPM) (Zea mays L.) Genotypes *

P Shanthi, G Suresh Babu, J Suresh, E Satyanarayana and R Sai Kumar
Department of Genetics and Plant Breeding Allahabad Agriculture Institute - Deemed University, Allahabad - 211007

Abstract

Forty-five QPM single cross hybrids along with 10 parents and two checks viz., DHM-105 and Shaktiman2 were evaluated for combining ability at two locations (Hyderabad and Allahabad) and in two seasons (Kharif 2003 and Kharif 2004) for 26 different yield, quality and yield contributing quantitative characters. From this study it is inferred that, both additive and non-additive gene effects were present in the material under study. However, the ratio of additive and non-additive genetic variance revealed that there was preponderance of non-additive gene action in the expression of all the traits under study. Based on per se performance and combining ability studies, the parents P_{3} and P_{1} were adjudged as best parents followed by P_{10} for possessing maximum number of favourable genes for grain yield and also yield contributing characters while parents $\mathrm{P}_{4}, \mathrm{P}_{7}$ and P_{2} recorded highest favourable genes for protein, oil and tryptophan content. The cross combinations $\mathrm{P}_{2} \times \mathrm{P}_{6}, \mathrm{P}_{4} \times \mathrm{P}_{7}$ and $\mathrm{P}_{5} \times \mathrm{P}_{10}$ exhibited highest magnitude of positive significant sca effects along with highest per se performance for yield, quality and yield contributing characters.

Key words : Combining ability, Diallel, Grain yield, Quality parameters, QPM, Zea mays L.

Maize (Zea mays L.) is an excellent source of carbohydrates, protein and good quality oil. It is more complete in nutrients in comparison to other cereals nevertheless all cereals including maize tend to be low in two essential amino acids viz., lysine and tryptophan [Olson R.A and Fray K.J. 1987]. Quality Protein Maize (QPM) is the one type of maize which is rich in lysine and tryptophan in its endosperm protein compared to normal maize [CIMMYT, 2000].

Concerted and continuous research work over more than 30 years made at CIMMYT, Mexico for the improvement of protein and oil content without affecting grain yield in maize was a successful story by utilizing opaque-2 gene and hard endosperm modifier genes which lead to the release of number of QPM parental lines and hybrids across the globe.

Further in India research efforts are being conducted at Directorate of Maize Research, I.A.R.I., New Delhi and also at Agricultural Research Station, Amberpet, Hyderabad in collaboration with CIMMYT, Mexico to screen and identify nutritionally superior genotypes with semi soft to hard endosperm corn coupled with high yield.

In this direction, the present investigation was carried out which aims at identification of superior parents with high general combining ability effects and hybrids possessing high specific combining ability effects along with high per se values for yield, yield components and quality parameters in QPM genotypes.

MATERIAL AND METHODS

Ten genetically diverse inbred lines of maize (P_{1} to P_{10}) viz., BHOML 32, BQPML 29, BQPML 106, BHOML 45, BQPML 38, BQPML 66, BHOML 131, BHOML 39, BHOML 68 and BQPML 42 were crossed in diallele mating design excluding reciprocals during rabi 2002-2003 at ARS, Amberpet, Hyderabad, A.P. to produce 45 experimental single cross hybrids for this study. The $45 \mathrm{~F}_{1}$'s, ten parents along with two standard checks viz., DHM 105- Normal maize hybrid (Better yielding check) and Shaktiman 2 - (QPM hybrid) were raised in Complete Randomized Block Design, replicated thrice. The experiments were conducted during kharif 2003 and kharif 2004 at two locations viz., Agricultural Research Station (Maize), Amberpet, Hyderabad, A.P., (Location-1)
and College Experimental Farm, Allahabad Agricultural Institute-Deemed University, Naine, Allahabad, U.P., (Location-2). Each genotype was planted in a single row of 5 m length with a row to row and plant to plant spacing of 75 cm and 20 cm respectively. The field was uniformly fertilized with recommended dose of 120 kg Nitrogen, $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ and $40 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O}$ per hectare. Nitrogen was applied in three split doses ($1 / 3$ basal $+1 / 3$ at knee height stage $+1 / 3$ at tasseling stage) and other two in total quantity were applied in basal application. Usual recommended cultural and plant protection practices as per the agronomical practices were adopted to maintain a good healthy crop.

The observations were recorded on 26 different yield, quality and yield contributing quantitative characters viz., germination percentage, number of days taken for germination, seedling vigour index, total vegetative growth period, days to 50% tasselling, total anthers dehiscence period, days to 50% silking, total period of silk appearance, days to 50% silk drying, active pollination period, total grain filling period, total reproductive growth period, ratio of vegetative growth period to reproductive growth period, plant height at maturity (cm), ear height at maturity (cm), ear length (cm), ear girth (cm), number of seeds per cob, cob weight $(\mathrm{g}), 100$-seed weight (g), grain yield per plot (kg), protein content (\%), protein yield (kg / ha), oil content (\%), oil yield (kg / ha), and tryptophan content (g/16g N). Five competitive plants were selected at random in each plot in each replication for all the genotypes in all the four environments excluding border plants for recording data except for days to 50% tasseling, days to 50% silking, days to 50% silk drying, total vegetative growth period, total grain filling period, total reproductive growth period and grain yield which were recorded on whole plot basis. The combining ability analysis was carried out as per procedure given by Griffing method 2 and model 1 [Griffing. B. 1956a.] for all the 26 characters studied in QPM genotypes.

RESULTS AND DISCUSSION

In the present investigation, the combining ability analysis revealed significant mean squares due to general and specific combining ability effects indicating that both additive and non-additive gene
actions involved in the inheritance of all the characters studied except for germination percentage. However, the ratio of additive and nonadditive variance showed that, the non additive gene action played great role in the inheritance of all the traits under study (Table 1). Similar results were also reported by earlier workers [Bjarnason and Vasal, 1992; Joshi. et al., 2002; Gautam, 2003; Ashish Srivastava et al., 2003; Bhatnagar et al., 2004]. Under these circumstances, for exploiting non-additive gene action and to improve these characters one has to resort to the breeding procedures, which lead to heterozygous end products such as recurrent selection and reciprocal recurrent selection.

The final selection of parents is mostly influenced by results on grain yield and other contributing characters, which have direct bearing on yield [Venkatesh, et al., 2001]. The general picture of combining ability of parents over all the characters is useful to decide the combining ability status of parents [Venkatesh et al.,2001]. Among the ten parental lines, $\mathrm{P}_{3}, \mathrm{P}_{1}, \mathrm{P}_{10}, \mathrm{P}_{8}$ and P_{6} are the good combiners for grain yield, other yield contributing characters and growth parameters as evidenced by their positive and highly significant gca effects along with higher per se performance (Table $2 \& 3$). The parental lines P_{3} and P_{1} can be given the status of good general combiners and genetically worthy parents, followed by P_{10} as they contributed maximum favourable genes for yield and yield components and were good combiners for maximum number of characters studied i.e., for 17 characters out of 26 characters studied. Hence, these high yielding parents with good attributes for different yield components may be inter crossed to pool the genes in desirable direction to improve the yield potential. Many researchers [Gautam, 2003; Prasad et al., 1988; Venugopal et al., 2002; Narasimha Reddy, 2003; Kabdal et al., 2003 and Suresh, 2004] also suggested that, grain yield in maize can be improved by improving the component characters. Whereas three parents viz., $\mathrm{P}_{4}, \mathrm{P}_{2}$ and P_{7} are found to be good general combiners with significant gca effects along with higher per se values for protein, oil and tryptophan content. Hence, these three parents can be better utilized for the simultaneous improvement of protein, oil and tryptophan content and also as a donor parents for these characters.
Table 1. Analysis of variance for combining ability for phenological, yield and quality parameters over two locations (Hyderabad and Allahabad)
and two seasons (Kharif 2003 and Kharif 2004).

Note:- GP - Germi-nation (\%), NDTG - No.of days taken for germination, SVI - Seedling vigour index, TVGP - Total vegetative growth period, DT - Days to 50% tasseling, TADP - Total anthers dehescence period, DS - Days to 50% silking, TPSA - Total period of silk appearance, DSD - Days to 50% silk drying, APP - Active pollination period, TGFP - Total grain filling period, TRGP- Total reproductive growth period, RVGP \& RGP - Ratio of vegetative growth period and reproductive growth period, PH - Plant height (cm), EH - Ear height (cm), EL - Ear length (cm), EG - Ear girth (cm), NSPC - No.of seeds per cob, CW - Cob weight (g), 100-SW - 100 seed weight (g), PC Protein content (\%) PY - Protein yield ($\mathrm{kg} / \mathrm{ha}$), OC - Oil content (\%), OY - Oil yield ($\mathrm{kg} / \mathrm{ha}$), TC - Tryptophan content ($\mathrm{g} / 16 \mathrm{~g} \mathrm{~N}$), GY - Grain yield per plot (kg)

Out of 45 single crosses evaluated, 27 crosses exhibited significant sca effect for grain yield. But, based on sca effects and highest per se performance eleven best specific combination for high yield were identified viz., $\mathrm{P}_{4} \times \mathrm{P}_{7}, \mathrm{P}_{3} \times \mathrm{P}_{9}, \mathrm{P}_{2} \times \mathrm{P}_{6}, \mathrm{P}_{5} \times \mathrm{P}_{10}$, $\mathrm{P}_{1} \times \mathrm{P}_{8}, \mathrm{P}_{3} \times \mathrm{P}_{8}, \mathrm{P}_{3} \times \mathrm{P}_{6}, \mathrm{P}_{1} \times \mathrm{P}_{5}$, $\mathrm{P}_{3} \times \mathrm{P}_{5}, \mathrm{P}_{1} \times \mathrm{P}_{10}$ and $\mathrm{P}_{3} \times \mathrm{P}_{10}$, which were having high grain yield i.e., more than 4.00 kg grain yield per plot (Table-2 \& 4). Among these hybrids except $\mathrm{P}_{4} \mathrm{x}$ P_{7} were the combinations of either both the parents as good combiners or one of the parents as good combiner. However, this single cross ($\mathrm{P}_{4} \times \mathrm{P}_{7}$) can be effectively used in a recurrent selection programme that favours specific combining ability. The cross combinations $\mathrm{P}_{1} \times \mathrm{P}_{8}, \mathrm{P}_{3} \times$ $\mathrm{P}_{8}, \mathrm{P}_{3} \times \mathrm{P}_{6}, \mathrm{P}_{1} \times \mathrm{P}_{10}$ and $\mathrm{P}_{3} \times \mathrm{P}_{10}$ are derivatives of high x high combiners and selection in these crosses may throw useful transgressive segregants for high grain yield in the future generations. Yield improvement can be sought from these crosses by pedigree or simple selection procedure. The other hybrids viz., $\mathrm{P}_{4} \times \mathrm{P}_{7}, \mathrm{P}_{5} \times \mathrm{P}_{10}, \mathrm{P}_{2} \times \mathrm{P}_{6}, \mathrm{P}_{3} \times \mathrm{P}_{5}$, $\mathrm{P}_{3} \times \mathrm{P}_{9}$ and $\mathrm{P}_{1} \times \mathrm{P}_{5}$ can be exploited by production of single cross hybrids in realizing their high yield potential. Further, amongst these high yielding single crosses, the three cross combinations viz., $\mathrm{P}_{4} \times \mathrm{P}_{7}, \mathrm{P}_{2} \times \mathrm{P}_{6}$ and $\mathrm{P}_{5} \times \mathrm{P}_{10}$ were found as good specific combiners for high grain yield and other yield contributing characters along with quality parameters i.e., protein, oil and tryptophan content. Hence, it is suggested that, these three hybrids (viz., $\mathrm{P}_{4} \times \mathrm{P}_{7}, \mathrm{P}_{2} \times \mathrm{P}_{6}$ and $\mathrm{P}_{5} \times \mathrm{P}_{10}$) can be better exploited as QPM hybrids for commercial cultivation across the wide
seasons (Kharif 2003 and Kharif 2004)

Table 2. Contd

[^0]Table 3. Mean GCA Effects of 10 Quality Protein Maize Parental inbred lines over two locations (Hyderabad and Allahabad) and two seasons (Kharif 2003 and Kharif2004).

Parent	GP	NDTG	SVI	TVGP	DT	TADP	DS	TPSA	DSD	APP	TGFP	TRGP	RVGP \& RGP
P1	0.00	0.06	-136.08**	0.56**	0.62**	0.71 **	0.53*	0.38**	0.88**	0.53**	1.78**	2.40**	-0.07**
P2	0.03	0.13**	71.80**	-0.41	-0.29	0.04	-0.29	-0.07	0.82**	-0.10**	0.35	-0.02	-0.01
P3	-0.15*	0.15**	-101.4**	0.54**	0.70**	0.58**	0.78**	0.51**	0.24	0.50**	2.60**	3.12**	-0.08**
P4	-0.03	0.08**	349.68**	-1.83**	-1.76**	-0.55**	-1.71**	-0.53**	-0.63**	-0.42**	-1.87**	-2.56**	0.06**
P5	-0.07	0.06	-113.35**	0.55*	0.61**	-0.06	0.47	0.10*	-0.73**	0.06*	0.32	0.43	-0.01
P6	-0.14	-0.06	129.00**	-0.59**	-0.65**	-0.11	-0.66*	0.13**	-0.46	0.03	0.13	0.13	-0.02**
P7	-0.02	-0.19**	237.86**	-0.98**	-1.16**	-0.59**	-0.87**	-0.63**	-0.75**	-0.62**	-2.55**	-3.24**	0.10**
P8	0.02	-0.24**	54.39**	-0.08	-0.30	-0.21**	-0.54*	0.08	-0.15	-0.02	-0.20	-0.11	0.00
P9	0.11	-0.09**	71.06**	-0.34	-0.43*	-0.24**	-0.68**	-0.30**	-0.05	-0.25**	-1.68**	-2.07**	0.06**
P10	0.25**	0.10*	-562.95**	2.56**	2.66**	0.43**	2.97**	0.34**	0.83**	0.29**	1.13**	1.92**	-0.02**
SE (gi)	0.12	0.04	8.59	0.23	0.22	0.07	0.29	0.04	0.26	0.04	0.23	0.25	0.01
SE (gi-gj)	0.17	0.06	12.8	0.34	0.34	0.1	0.43	0.06	0.39	0.05	0.34	0.37	0.02
Parent	PH	EH	EL	BG	NSPC	CW	100-SW	PC	PY	OC	OY	TC	GY
P1	6.54**	1.13	0.80**	0.42**	20.62**	14.01**	2.14**	-0.56**	88.35**	-0.44**	52.35**	-0.08**	0.44**
P2	0.44	1.87**	-0.03	0.11	-16.45**	-1.65	0.40	0.23**	-31.36**	0.14**	-21.99**	0.01**	-0.16**
P3	4.48**	-0.37	0.55**	0.62**	24.13**	21.26**	2.74**	-0.43**	133.4**	-0.22**	93.78**	-0.05**	0.54**
P4	-2.84**	-0.43	-0.99**	-0.89**	-33.88**	-17.04**	-2.27**	0.30**	-97.06**	0.21 **	-64.76**	0.06**	-0.37**
P5	-0.74	2.35**	0.46**	0.13	5.30	5.02**	0.40	0.02	9.54	0.06	9.74*	0.00	0.01*
P6	-4.40	-3.00**	-0.17	-0.03	-2.91	-1.10	0.64**	0.19*	26.11**	0.11*	17.92**	0.02**	0.03**
P7	-2.23**	-1.76**	$-0.38 * *$	-0.78**	-22.58**	-13.40**	$-2.22^{* *}$	0.41**	-101.21**	0.28**	-64.94**	0.04**	-0.44**
P8	2.85**	-0.20	-0.02	0.02	8.77	-2.02	-1.27**	-0.05	9.16	-0.11*	1.34	-0.01**	0.05**
P9	-5.57**	-1.40**	-0.55**	-0.12	-9.61	-8.11**	$-1.91 * *$	0.12	-67.41**	0.06	-47.32**	0.01**	-0.23**
P10	1.47	-0.19	0.35*	0.53**	26.60**	3.01	1.32**	$-0.23 * *$	30.49**	-0.09	$23.87^{* *}$	-0.03**	0.14**
SE (gi)	0.87	0.44	0.16	0.14	5.05	2.1	0.29	0.09	5.95	0.12	4.02	1.68	0.02
SE (gi-gj)	1.29	0.66	0.23	0.21	7.53	3.14	0.43	0.12	8.87	0.18	5.99	2.51	0.02

AAJ 63

[^1]Table 4. Mean SCA Effects of 11 best QPM single crosses over two locations (Hyderabad and Allahabad) and two seasons (Kharif 2003 and Kharif 2004)
Gene action and combining ability studies in QPM genotypes

Cross combination	GP	NDTG	SVI	TVGP	DT	TADP	DS	TPSA	DSD	APP	TGFP	TRGP	$\begin{aligned} & \text { RVGP } \\ & \& R G P \end{aligned}$
P1x P5	0.24	-0.68**	452.68**	-1.58*	-2.26**	1.73**	-2.55**	1.31**	-1.05	1.04**	7.95**	9.68**	-0.24**
P1x P8	-0.48	-0.17	-318.97**	1.91*	1.74*	1.61**	1.71	1.01**	-0.95	1.18**	7.47**	9.88**	-0.20**
P1x P10	-0.04	-0.48**	-170.22**	1.33	0.85	1.01**	-0.71	1.33**	-1.18	1.25**	3.81**	4.52**	-0.08*
P2x P6	-0.21	0.54**	-135.55**	0.09	0.64	2.02**	1.06	2.71**	1.67*	2.07**	10.57**	13.39**	-0.32**
P3x P5	0.23	-0.02	-186.59**	1.27	1.25	0.96**	1.11	1.38**	2.26**	1.42**	7.47**	8.87**	-0.17**
P3 X P6	-0.20	-1.66**	636.32**	-1.92**	-3.59**	1.40**	-2.76**	1.51**	-2.67**	1.17**	4.99**	6.67**	-0.19**
P3x P8	-0.26	-0.61**	186.60**	-0.15	-0.76	1.23**	-1.55	1.23**	-1.65*	0.84**	5.32**	6.66**	-0.18**
P3x P9	0.01	-0.78**	178.27**	-0.19	-0.98	1.41**	-0.75	1.47**	-2.42**	1.24**	5.13**	7.29**	-0.21**
P3x P10	-0.06	-0.68**	-391.73**	2.20**	1.52*	1.30**	2.61**	1.36**	-2.29**	0.91**	5.32**	6.30**	-0.09**
P4x P7	-0.50*	0.00	284.89**	-2.05**	-2.04**	3.59**	-2.40**	2.51**	1.08	2.42**	12.63**	16.30**	-0.52**
P5x P10	-0.56*	-0.83**	278.88**	-0.14	-0.97	1.35**	-1.41	1.89**	-1.74**	1.46**	6.77**	7.99**	-0.18**
$\operatorname{SE}\left(\mathrm{S}_{\mathrm{ij}}\right)$	0.39	0.14	28.89	0.76	0.76	0.22	0.98	0.14	0.87	0.12	0.78	0.84	0.03
$\underline{\mathrm{SE}\left(\mathrm{S}_{\mathrm{ij}}-\mathrm{S}_{\mathrm{ik}}\right)}$	0.58	0.21	42.46	1.11	1.12	0.32	1.43	0.21	1.28	0.17	1.14	1.23	0.05
Cross combination	PH	EH	EL	EG	NSPC	CW	100-SW	PC	PY	OC	OY	TC	GY
P1x P5	30.81**	16.66**	3.70 **	2.41 **	175.23**	76.38**	5.67**	0.46	309.91**	0.56**	228.30**	0.05**	0.95**
P1x P8	21.14**	7.88**	2.50**	2.52**	81.59**	70.00**	4.13**	-0.12	339.52**	0.31*	256.63**	-0.02	1.28**
P1x P10	24.60**	17.87**	3.14**	1.35**	76.26**	53.23**	3.96**	0.66	270.95**	0.88**	226.24**	0.09**	0.78**
P2x P6	30.91**	28.94**	4.15**	3.39**	147.33**	68.91**	7.49**	0.53*	475.92**	0.71**	346.30**	0.05**	1.35**
P3x P5	19.88**	1.83	2.95**	2.88**	102.55**	44.38**	3.30 **	0.97**	343.45**	0.63**	223.38**	0.09**	0.86**
P3 X P6	37.88**	11.51**	2.08**	2.35**	117.92**	52.25**	4.97**	-0.23	286.23**	0.04	206.09**	-0.03	1.12**
P3x P8	23.46**	17.38**	2.59**	1.63**	107.74**	66.17**	4.96**	0.17	332.36**	0.35*	237.89**	0.00	1.13**
P3x P9	43.22**	11.91**	2.62**	1.94**	76.12**	63.69*	2.87**	-0.30	376.37**	0.00	268.26**	-0.05**	1.43**
P3x P10	38.17**	8.70**	2.22**	1.62**	88.57**	38.81**	3.10**	1.04**	313.37**	0.72**	210.06**	0.09**	0.78**
P4x P7	32.69**	27.58**	6.32**	3.77**	256.27**	108.77**	8.97**	0.23	673.83**	0.42**	471.21**	0.06**	2.05**
P5x P10	28.56**	19.98**	2.15**	2.63**	88.91**	56.80**	5.07**	0.81**	473.94**	0.63**	322.44**	0.07**	1.34**
SE (S_{ij})	2.91	1.48	0.52	0.47	16.99	7.07	0.96	0.28	23.85	0.20	16.96	0.02	0.03
SE ($\left.\mathrm{S}_{\mathrm{ij}}-\mathrm{S}_{\mathrm{ik}}\right)$	4.28	2.18	0.77	0.69	24.98	10.40	1.42	0.41	35.06	0.30	24.93	0.04	0.04

Note:- GP - Germi-nation (\%), NDTG - No.of days taken for germination, SVI - Seedling vigour index, TVGP- Total vegetative growth period, DT - Days to 50\% tasseling,
TADP-Total anthers dehescence period, DS - Days to 50% silking, TPSA - Total period of silk appearance, DSD - Days to 50% silk drying, APP - Active pollination period, TGFP - Total grain filling period, TRGP - Total reproductive growth period, RVGP \& RGP - Ratio of vegetative growth period and reproductive growth period, PH - Plant height (cm), EH - Ear height (cm), EL - Ear length (cm), EG - Ear girth (cm), NSPC - No.of seeds per cob, CW - Cob weight (g), 100-SW - 100 seed weight (g), PC - Protein content (\%) PY - Protein yield (kg/ha), OC - Oil content (\%), OY - Oil yield (kg / ha), TC - Tryptophan content (g/16gN), GY - Grain yield per plot (kg)
environments through heterosis breeding and also exploited for the derivation of QPM inbred lines in segregating generations.

In conclusion, from the present investigation it could be inferred that the parents P_{3} and P_{1} were adjudged as best parents followed by P_{10} for grain yield, other yield contributing and growth parameters, while parents $\mathrm{P}_{4}, \mathrm{P}_{7}$ and P_{2} for protein, oil and tryptophan content and the three crosses namely., $\mathrm{P}_{4} \times \mathrm{P}_{7}, \mathrm{P}_{2} \times \mathrm{P}_{6}$ and $\mathrm{P}_{5} \times \mathrm{P}_{10}$ were found as good specific combiners for high grain yield and other yield contributing characters along with quality parameters i.e., protein, oil and tryptophan content.

Acknowledgements

The financial support from Indian Council of Agricultural Research (ICAR) as this research study was conducted in part of NATP-QPM Project is greatly acknowledged. The authors also thank Head of ARS, Amberpet, Hyderabad for providing facilities during this period of study.

LITERACTURE CITED

Ashish Srivastava, Singh I S, Srivastava A 2003 Heterosis and combining ability for yield and maturity involving exotic and indigenous inbred lines of maize (Zeamays L.). Indian J. Gene. and Pl. Bree., 63: 4, 345-346.

Bhatnagar S, Betran F J and Rooney W 2004 Combining abilities of Quality Protein Maize inbreds. Crop Scie., 44: 1997-2005.
Bjarnason M and Vasal. S K 1992 Breeding of quality protein maize (QPM). Plant Breeding Review 9: 181-216.
CIMMYT 2000 Annual Progress Report and News: CIMMYT: CGIAR: MEXICO: 5 (IIV): 10-20.

Gautam A S 2003 Combining ability studies for grain yield and other agronomic characters in inbred lines of maize (Zea mays L.). Crop Res., Hisar. 26: 3, 482- 485.

Griffing B 1956a Concept of general and specific combining ability in relation to diallel crossing system. Australian J. Bio. Sci., 9: 463-493.
Joshi V N, Dubey R B and Marker S 2002 Combining ability for polygenic traits in early maturing hybrids of maize. Indian J. Gene. and Pl. Bree., 62(4): 312-315.
Kabdal M K, Verma S S, Kumar A and Panwar UBS 2003 Combining ability $a n d$ heterosis analysis for grain yield and its components in maize (Zea mays L.). Indian J. Agric. Res., 37: 1, 39-43.

Narasimha Reddy 2003 Genetic analysis of yield and its components in selected tropical and sub tropical maize inbreds. Ph.D. Thesis submitted to Acharya N.G.Ranga Agric. Univ., Hyderabad.
Olson R A and Fray K J 1987 Nutritional quality of cereal grains. Genetic and agronomic importance. Agronomy No. 28: America Society of Agronomy Madison, Wisconsin, USA. Pp; 511.
Prasad R, Singh S and Paroda R S 1988 Combining ability analysis in a maize diallel. Indian J. Gene. and Pl. Bree., 48: 19-23.
Suresh J 2004 Genetic Analysis of protein and grain yield parameters in selected maize (Zea mays L.) genotypes. Ph.D. Thesis submitted to Acharya N.G. Ranga Agric. Univ., Hyderabad.
Venkatesh S, Singh N N and Gupta N P 2001 Use of inbred testers for evaluating combining ability in modified single cross hybrids of maize. Indian J. Gene. and Pl. Bree., 61: 309-313.
Venugopal B, Chandramohan Y, Rao N V and Reddy V S 2002 Combining ability analysis for quality and grain yield in maize (Zea mays L.). National Journal, Plan. Impro., 4: 2, 50-55.
(Received on 31.12.2013 and revised on 16.10.2014)

[^0]: | Checks | PH | EH | EL | EG | NSPC | CW | 100-SW | PC | PY | OC | OY | TC |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | DHM 105 | 149.75 | 82.33 | 17.18 | 14.53 | 459.25 | 122.75 | 27.11 | 8.82 | 668.44 | 3.98 | 301.07 | 0.40 |
 | GY | | | | | | | | | | | | |
 | Shaktiman-2 | 124.50 | 77.00 | 15.18 | 13.20 | 362.75 | 84.75 | 25.32 | 10.38 | 718.39 | 5.30 | 366.22 | 0.72 |

 Note:- GP - Germi-nation (\%), NDTG - No.of days taken for germination, SVI - Seedling vigour index, TVGP- Total vegetative growth period, DT-Days to 50% tasseling,
 TADP - Total anthers dehescence period, DS - Days to 50% silking, TPSA - Total period of silk appearance, DSD - Days to 50% silk drying, APP - Active pollination
 period, TGFP - Total grain filling period, TRGP - Total reproductive growth period, RVGP \& RGP - Ratio of vegetative growth period and reproductive growth period. PH - Plant height (cm), EH - Ear height (cm), EL - Ear length (cm), EG - Ear girth (cm), NSPC - No.of seeds per cob, CW - Cob weight (g), 100-SW - 100 seed weight (g), PC Protein content ($\%$) PY - Protein yield (kg / ha), OC - Oil content (\%), OY - Oil yield (kg / ha), TC - Tryptophan content (g/16g), GY - Grain yield per plot (kg)

[^1]: Note:- GP - Germi-nation (\%), NDTG - No.of days taken for germination, SVI - Seedling vigour index, TVGP - Total vegetative growth period, DT - Days to 50\% tasseling, TADP - Total anthers dehescence period, DS - Days to 50% silking, TPSA - Total period of silk appearance, DSD - Days to 50% silk drying, APP - Active pollination period, TGFP - Total grain filling period, TRGP - Total reproductive growth period, RVGP \& RGP - Ratio of vegetative growth period and reproductive growth period, PH - Plant height (cm), EH - Ear height (cm), EL - Ear length (cm), EG - Ear girth (cm), NSPC - No.of seeds per cob, CW - Cob weight (g), 100-SW - 100 seed weight (g), PC - Protein content (\%) PY - Protein yield (kg / ha), OC - Oil content (\%), OY - Oil yield (kg / ha), TC - Tryptophan content (g/16g N), GY - Grain yield per plot (kg)

