

Influence of Fertilizer Management Practices on Growth, Yield and Quality of Export Oriented Groundnut [Arachis hypogaea (L.)].

Key words : Export oriented Groundnut, Growth parameters, Micro nutrients, Quality, Yield.

Groundnut is the most important oilseed crop of India. To a very limited extent, groundnut is also used for table purpose and confectionary, for which bold kernel types are mostly preferred. Because of the bold size of pods and kernels, the nutritional requirement is reportedly higher than traditional cultivars. Groundnut, inspite of its high nutrient requirement, is cultivated mostly on soils deficient in macro and micronutrients. Due to micronutrient deficiencies, particularly Zn, B and Mo yield reduction of groundnut is substantial (Tripathy et al., 1999). One of the factors responsible for low yields of groundnut is the inadequate and imbalanced use of nutrients. Hence, the present experiment was conducted to study the response of 'Asha', an export oriented groundnut variety to different levels of major nutrients along with different micro nutrients. The test cultivar was Asha (ICGV-86564), which matures in 120-130 days with yield potential of 3 t ha-1 and the protein content ranged from 30-35 percent.

A field experiment was conducted during rabi, 2005 in dry land farm of S.V.Agrilcultural College, Tirupati. The soil of the experimental site was sandy clay loam in texture and the initial nutrient status was 230, 21.4 and 205 N-P₂O₅-K₂O kg ha⁻¹ respectively. The experiment was laid out in split plot design and replicated thrice. The treatments comprised of three levels of major nutrients viz., 30-40-50 N- $P_0 O_2 - K_0 O_2$ Kg ha⁻¹ (M₄), 45-60-75 N-P₂O₂-K₂O Kg ha⁻¹ (M₂) and 60-80-100 N-P₂O₅-K₂O Kg ha⁻¹ (M_{a}) assigned to main plots and six micronutrient management practices viz., no micronutrient application (S₄), ZnSO₄ @ 10 kg ha⁻¹ (S₂), Borax @ 5kg ha⁻¹ (S₂), FeSO₄ @ 2.5 kg ha⁻¹ (S₄), CuSO₄ @ 5 kg $ha^{-1}(S_{s})$ and combined application of all the four micronutrients (S₆) allotted to sub plots. Entire dose of all the fertilizers except nitrogen was applied basally. Nitrogen was applied in two equal splits viz., first half at the time of sowing as basal and remaining half as top dressing at 30 DAS. Growth parameters viz., plant height, leaf area index, drymatter production were recorded at 30, 60, 90 DAS and at harvest. Yield attributes and yields were recorded at harvest. Kernels collected from different treatments were analyzed for oil and protein content by using standard techniques and expressed as percentage.

The plant height of groundnut increased progressively with advance in the age of the crop up to harvest. The highest plant height was recorded with the higher level of major nutrients i.e. 60-80-100 N-P₂O₅-K₂O Kg ha⁻¹ and with combined application of micro nutrients. Irrespective of the interval, significantly highest leaf area index and drymatter production was recorded with highest level of major nutrients *i.e.* 60-80-100 N-P₂O₅-K₂O Kg ha⁻¹(M₂) which was comparable with 45-60-75 N-P₂O₅-K₂O Kg ha⁻¹ (M₂) but higher than with lower level of application 30-40-50 N-P₂O₅-K₂O Kg ha⁻¹(M₁) Among micro nutrient management practices, combined application all four micro nutrients (B, Zn, Cu and Fe) recorded the highest leaf area index and drymatter production than no micro nutrient application (Table 1) due to improved nodulation, increased nutrient uptake and better growth of the crop. These results are in line with the findings of Bunsa et al. (2004).

The yield attributes like number of filled pods plant⁻¹, pod weight, shelling percent and test weight of Asha variety recorded highest values with the highest level of major nutrients (M₂) which was comparable with (M₂) but significantly higher with (M₁) Similar results have been reported by Gundalia et al. (2004). All the above yield parameters were recorded highest values with combined application of all the four micro nutrients (S₆), which was followed by individual application of Zn and B. Lowest values were recorded with no micro nutrient application. Subramaniyan et al. (2001) also reported that application of ZnSO, borax and ferrous sulphate either alone or in combination significantly increased the pod yield, shelling percentage and 100 kernel weight. The highest pod and haulm yields were produced with the highest level of major nutrients tried (M_{a}) which was comparable with (M₂) but significantly higher with (M₄) which has produced the lowest yields. Among the micronutrient management practices, significantly the highest pod and haulm yields

÷
Ľ
p
Ъ
2
σ
ď
လု
ē
ē
Ε
ā
ba
Ę
¥
õ
ъ
Ę
0
e
<u>0</u> .
ğ
g
<u>a</u>
Ę
e
Б
ğ
Ц
В
F
Ę
<u>e</u> .
Ę
Ц
Ę
ē
ē
ΞŦ
σ
đ
ರ
ē
뛰
щ.
5
Ä
ar.
F

Trotmont		Plant hei	ight (cm)			Leaf Are	a Index		Dryma	atter produ	ction (kg ha	a-1)
Ireament	30 DAS	60 DAS	90 DAS	At	30 DAS	60 DAS	90 DAS	At	30 DAS	60 DAS 9	0 DAS	≜t
				harvest				harvest			har	vest
Major nutrients (N-P ₂ O ₅ -	$K_2 \cup kg na^{-1}$											
M ₁ : 60-80-100	7.8	17.9	26.9	33.08	0.193	2.38	3.51	2.95	389	2536	4501 59	43
M _. : 45-60-75	8.9	19.3	32.5	35.08	0.204	2.50	3.69	3.15	486	2828	4716 61	36
Mີ້: 30-40-50	9.2	19.8	33.1	35.46	0.209	2.51	3.78	3.20	508	2880	4752 62	66
SĔm±	0.07	0.31	0.42	0.441	0.002	0.01	0.02	0.01	6.3	3572	18.81 44	.86
CD (P=0.05)	0.30	1.22	1.65	NS	0.008	0.05	0.09	0.04	25	140	74 17	9
Micro nutrients												
S_1 : No micronutrient	8.4	17.5	28.62	32.06	0.188	2.07	3.04	2.26	436	2243	4142 54	62
application												
S_2 : ZnSO ₄ @ 10 kg ha ⁻¹	8.80	19.5	31.9	34.99	0.206	2.49	3.78	3.34	469	2878	4816 69	80
Sੂ: Borax @ 5 kg ha¹	8.53	18.6	31.35	34.72	0.203	2.48	3.73	3.16	462	2784	4760 68	15
S₄́: FeSO₄ @ 2.5 kg ha⁻¹	8.66	19.0	30.84	33.68	0.193	2.35	3.62	3.11	455	2740	4562 57	28
S _e : CuSO₄ @ 5 kg ha¹	8.71	19.2	29.93	34.36	0.191	2.40	3.63	3.14	452	2728	4569 59	83
S ₆ : combined application of all the four	8.90	20.3	32.58	37.41	0.213	3.03	4.15	3.59	494	3112	5090 72	51
micronutrients												
Sem±	0.132	0.271	0.417	0.310	0.002	0.01	0.02	0.01	4.5	26.58	37.02 65	6.0
CD (P=0.05)	NS	0.79	1.23	0.92	0.006	0.04	0.06	0.05	13	11	107 19	0
M x S interaction												
CD (P=0.05) NS	NS	NS	NS	NS	NS	NS	NS	SN	SN	NS	NS	

•
ŝ
ġ
0
Ŧ
ğ
<u></u>
ā
5
5
Š
Ð
σ
g
g
ĉ
Ę
5
. <u>Ψ</u> .
5
5
5
-
7
ຄັ
Ľ
Ð
£
÷
0
>
ف
~
Š
Ϋ́
2
5
Ψ
_
Ē
<u> </u>
22
Ħ
2
<u> </u>
Ę
Ipur
Ipung
oundi
ground
^c groundi
of ground
s of ground
rs of ground
ers of ground
ters of ground
eters of ground
neters of ground
ameters of ground
rameters of ground
arameters of ground
parameters of ground
/ parameters of ground
ty parameters of ground
lity parameters of ground
ality parameters of ground
uality parameters of ground
quality parameters of ground
d quality parameters of ground
nd quality parameters of ground
and quality parameters of ground
and quality parameters of ground
d and quality parameters of ground
eld and quality parameters of ground
ield and quality parameters of ground
yield and quality parameters of ground
i, yield and quality parameters of ground
ss, yield and quality parameters of ground
tes, yield and quality parameters of ground
utes, yield and quality parameters of ground
butes, yield and quality parameters of ground
ibutes, yield and quality parameters of ground
tributes, yield and quality parameters of ground
attributes, yield and quality parameters of ground
attributes, yield and quality parameters of ground
d attributes, yield and quality parameters of ground
eld attributes, yield and quality parameters of ground
feld attributes, yield and quality parameters of ground
Yield attributes, yield and quality parameters of ground
. Yield attributes, yield and quality parameters of ground
2. Yield attributes, yield and quality parameters of ground
e 2. Yield attributes, yield and quality parameters of ground
le 2. Yield attributes, yield and quality parameters of ground
ble 2. Yield attributes, yield and quality parameters of ground
able 2. Yield attributes, yield and quality parameters of ground

Treatment	Filled pods (no)/ plant	100 pod weight (g)	Shelling (%)	Test Weight (g)/100 kernels	Pod yield (kg ha¹)	Haulm Yield (kg ha ⁻¹)	Harvest index (%)	Protein content c (%)	Oil content (%)	B:C ratio
Major nutrients (N-P ₂ O ₅ -K ₂ C M ₁ : 60-80-100 M ₂ : 45-60-75 M ₃ : 30-40-50 SEm± CD (P=0.05) Micro nutrients Si: No micronutrient application S ₂ : ZnSO ₄ @ 10 kg ha ⁻¹ S ₅ : CuSO ₄ @ 5 kg ha ⁻¹ S ₅ : CuSO ₄ @ 5 kg ha ⁻¹ S ₅ : CusO ₄ @ 5 kg ha ⁻¹ S ₅ : Combined application of all the four micronutrients SEm± CD (P=0.05) M × S interaction SEm± CD (P=0.05)) kg ha ⁻¹) 25.5 29.0 29.8 0.262 1.0 31.1 25.1 33.4 25.1 33.4 1.10 1.9 1.10 3.3	121.8 129.0 130.4 0.70 2.8 125.1 125.3 136.3 136.3 0.880 0.880	64.91 68.84 69.73 69.73 0.233 0.233 0.233 63.2 63.2 61.4 66.9 67.4 66.9 71.9 71.9 71.9 71.9 71.9	58.0 61.1 62.2 62.2 0.670 54.8 59.3 59.0 58.3 68.7 68.7 68.7 2.5 2.5 2.5	1984 2175 2175 2244 18.33 18.33 72 2383 2279 1742 1808 1808 2002 2592 2592 118 118 107.3	3834 4022 4024 46.19 182 3594 4131 3660 3854 4131 3854 4131 206 206	36.17 36.17 37.96 38.52 0.11 0.42 40.09 33.01 36.17 41.87 36.17 41.87 0.24 0.68	32.00 34.32 36.46 0.04 0.19 34.04 34.04 34.04 34.04 34.04 34.04 34.04 0.10 0.10 0.10	50.42 47.32 43.17 0.672 2.62 2.62 48.36 48.36 48.21 43.61 43.61 1.58	
)			2	2					

Fig 1. Total drymatter production Vs Pod Yield of groundnut (kg ha-1) as influenced by different nutrient management practices

were recorded with application all the four micronutrients, due to efficient translocation of assimilates, particularly for development of pods i.e., involvement of micronutrients in regulatory functions, auxin production, which resulted in increased stature of all the yield attributes led to higher yields (Table 2). The yield increase was to the tune of 48% due to combined application of micro nutrients over control. Janakiraman *et al.* (2004) reported that pod yield of groundnut was significantly higher when Fe, Zn and B were applied along with recommended dose of NPK fertilizers. These findings are in agreement with those of Chaube *et al.* (2002).

Protein content of kernel was at most important for bold kernel type, which is intended for export purpose. The highest protein content was recorded with the highest level of major nutrients tried (M_3) which was significantly superior to (M_2) and (M_1) with significant disparity between any two successive levels. Among the micronutrient management practices, the highest protein content was recorded with application all the four micronutrients, followed by S₂ and S₃ and lowest with S₁ The increase in protein content was 13.9 % with application of 60-80-100 N-P₂O₂-K₂O Kg ha⁻¹ over 30-40-50 N-P₂O₂-K₂O Kg ha⁻¹ and 15.5 % with combined application of all the four micro nutrients (B, Zn, Cu and Fe) over no micro nutrient application, as the micro nutrients are involved in the synthesis of amino acids, leading to the formation of the protein molecules (Table 2). Findings of the present investigation are in agreement with those of Krishnappa et al. (1994). Highest oil content was recorded with lowest level of major nutrients (M1) and with combined application of micro nutrients (S_e). Balasubramaniyan (1997) also reported that inorganic fertilizer application at 150 per cent of recommended dose increased the protein yield, while oil percentage in the kernel remained unaltered. The highest harvest index of 38.52 % and 41.87 % was recorded with M₃ and S₆ respectively. Benefit cost ratio did not differ significantly difference due to different levels of major nutrient tried, while combined application of all four micronutrients resulted in significantly highest B: C ratio.

Fig 2. Protein content and oil content in groundnut kernel (%) as influenced by different nutrient managmnent practices.

Treatments

Micro nutrients

LITERAUTRE CITED

- Balasubramaniyan P 1997. Effect of integrated nutrient management on yield, guality and economic returns in irrigated groundnut. Madras Agricultural Journal, 84(9):536-538.
- Bunsa P B, Golakiya B A and Polaraj V 2004. Influence of potassium along with nitrogen and phosphorus on yield and nutrient uptake by groundnut. Proceeding of National Symposium held at NRCG Junagadh, dated 11-13 of October 2004 on enhancing productivity of groundnut for sustaining food and nutritional security, pp: 11-13.
- Chaube A K, Srivastava P C, Singh S K and Gangawar MS 2002. Efficacy of different methods of zinc application in groundnut (Arachis hypogeae L.). Journal of Oilseeds Research, 19(2): 237-238.+
- Gundalia J D, Polara K b and Polara J V 2004. Effect of K levels at recommended and higher NP rates on yield of summer groundnut GG-2. Advances in Plant Science. 17(2): 591-596.

Department of Agronomy S V Agricultural College Tirupati 517 502 Andhra Pradesh.

Janakiraman N. Venkataravana P and Seenappa C 2004. Effect of micronutrients on growth and yield of groundnut (Arachis hypogeae L.). Environment and Ecology, 22(4) :666-668.

- Krishnappa M, Srinivasan C N, Sarkar P W and Sastry J A 1994. Effect of iron, zinc and molybdenum on protein content of groundnut varieties. Journal of Maharashtra Agricultural Universities, 17(2): 232-235.
- Subrahmaniyan K, Kalaiselvan P and Arulmozhi N 2001. Response of confectionery groundnut to micronutrients. Legume Research, 24(2): 139-140.
- Tripathy S K, Patra A K and Samui S C 1999. Effect of micronutrients on nodulation, growth, yield and nutrient uptake by groundnut (Arachis hypogeae L.).Indian Journal of Plant Physiolosy, 4(3): 207-209.

S Tirumala Reddy D Srinivasulu Reddy **G** Prabhakara Reddy

109

(Received on 06.08.2010 and revised on 28.08.2010)