

Multivariate Analyses in Castor (Ricinus communis L.)

M Srinivasa Rao, V Satyanarayana Rao, M Lal Ahamed and M V Ramana

Department of Genetics and Plant Breeding, Agricultural college, Bapatla 522101, Andhra Pradesh

ABSTRACT

Fifty four genotypes of castor representing the broad spectrum of variation were assessed for genetic divergence for twenty eight characters using Mahalanobis' D^2 statistic, cluster analysis and principal component analysis. On the basis of these three clustering methods nine and eight clusters were obtained for D^2 statistic and principal component analysis respectively.

Key words : Castor, Cluster analysis, D² analysis, Principal Component Analysis

Castor is one of the ancient oilseed crops of the world, which belongs to family Euphorbiaceae and genus Ricinus. The diversity of parents is of prime importance, since the crosses made between the genetically divergent parents are likely to throw desirable recombinants in the progenies. Traditionally Mahalanobis' D² statistic to measure genetic divergence as suggested by Rao (1952) has been used by different workers in castor. The present study was carried out with different methods of clustering based on D² analysis, hierarchical cluster analysis and principal component analysis.

MATERIAL AND METHODS

Fifty four castor (Ricinus communis L.) genotypes obtained from different research centers across the country were planted in randomized block design with three replications at Agricultural College Farm, Bapatla during kharif 2008-09 (Fig. 1). The inter- and intra-row spacing adapted was 90cm x 60cm. Each genotype was sown in three rows of 3m length and observations were recorded on ten plants from each genotype per replication or on plot basis for characters viz., days to 50% flowering of primary raceme, stem length to primary raceme, number of nodes to primary raceme, total length of primary raceme, effective length of primary raceme, days to 80% maturity of primary raceme, secondary branches plant¹, days to 50% flowering of secondary raceme, number of nodes to secondary raceme, stem length to secondary raceme, total length of secondary raceme, effective length of secondary raceme, days to 80% maturity of secondary raceme, number of tertiary branches per plant, days to 50% flowering of tertiary raceme, number of nodes to tertiary raceme, stem length to tertiary raceme, effective length of tertiary raceme, days to 80%

maturity of tertiary raceme, 100 seed weight of primary raceme, 100 seed weight of secondary raceme, 100 seed weight of tertiary raceme, oil content, L/B ratio of seed, harvest index, seed yield plant⁻¹ at 120 days, seed yield plant⁻¹ upto 150 days and seed yield plant⁻¹ upto 180 days. The data were statistically analyzed to study diversity by Mahalanobis' D² statistic as per Rao (1952), principal component analysis (PCA) as described by Jackson (1991) and cluster analysis as described by Anderberg (1993).

RESULTS AND DISCUSSION

On the basis of D^2 values and cluster analysis the fifty four genotypes were grouped into nine and eight clusters, respectively. Based on D^2 values, clustering pattern comprised nine clusters, out of which cluster II was the biggest cluster with 14 genotypes followed by clusters I and III which consisted of eleven genotypes, cluster V with eight genotypes, cluster VIII with five genotypes followed by cluster VII with two genotypes while the remaining clusters *i.e.* cluster IV, cluster VI and cluster IX consisted of single genotype in each (Table 1).

Based on Ward minimum variance dendrogram, the clustering pattern revealed that cluster IV and cluster VII had 12 genotypes each, cluster VIII with 10 genotypes followed by cluster I and cluster V comprising 7 genotypes. Cluster VI possessed 3 genotypes followed by cluster II with 2 genotypes. Whereas the remaining cluster III consitsed of 1 genotype as shown in Table1 and Fig 1.

Based on D² values the maximum intracluster D² value was 1737.736 for cluster VIII followed by cluster V, II, III, VII and I while it was zero for cluster IV, VI, and IX. The maximum inter-

	Based or	n D ² value (Mahalanobis' analysis)	Based on cluster analysis (Ward's minimum variance method)							
Cluster No.	No. of geno- types	Name of the genotype	No. of geno- types	Name of the genotype						
I	11	PPL 104, PPL 109, PPL 125, PPL 128, PPL 136, PCH 80, GCH 4, PPL 137, PCH 111,PPL 107, PPL 151	7	PPL 101, PPL 108, PPL 105, PPL 133, PPL 138, PPL 148, PPL 141						
II	14	PPL 101, PPL 108, PPL 119, PPL 132, PPL 116, PPL 114, PPL 120, PPL 134, PPL 111, PPL131, PPL 135, PPL 112, PPL 118, PPL 145	2	PPL 102, PPL 149						
III	11	PPL 121, PPL 122, PPL 144, PPL115, PPL103, PPL 126, PPL 110, M-574, PPL 123, PPL142, DPC-9	1	PPL 147						
IV	1	PPL 113	12	PPL 104, PPL 109, PPL 107, PPL 125, PPL 128, PPL 136, GCH 4, PCH 111, PCH 80, PPL 137, PPL 117, KIRAN						
V	8	PPL 140, PPL 150, PPL 143, PPL 105, PPL133, PPL138, PPL 148, PPL 141,	7	PPL 115, PPL 144, PPL121, PPL 122, PPL 103, PPL126, PPL151						
VI	1	PPL 117	3	PPL 129, PPL 130, PPL 139						
VII	2	PPL 102, PPL 149	12	PPL 106, PPL 110, PPL 112, PPL 113, PPL 118, PPL 120, PPL 114, PPL 119, PPL 131, PPL 135, PPL 132, PPL 134						
VIII	5	PPL 129, PPL 130, PPL 139, KIRAN, PPL 106	10	PPL 111, PPL 145, DPC-9, M-574, PPL 116, PPL 142, PPL 143, PPL 123, PPI 140, PPL 150						
K	1	PPL 147,	-							

Table 1. Genotypes of castor included in each cluster based on Mahalanobis' D² analysis and Ward's minimum variance method

cluster D² value were observed between cluster VI and IX followed by cluster I and IX and the least inter-cluster distance was observed between cluster I and cluster VI (Table 2).

The distribution of genotypes based on PCA values were shown in 3D plot where the genotypes PPL 117 and PPL 147 were away from the axis genotypes on the basis of PCA I and PCA II scores (Table 3 and Fig 2).

The results obtained from the data on cluster means (Table 4) from the different characters based on D² statistic revealed that Cluster IV recorded low days to 50% flowering of primary raceme, stem length to primary raceme days to 50% flowering of secondary raceme, stem length to secondary raceme, days to 80% maturity of secondary raceme, days to 50% flowering of tertiary raceme, days to 80% maturity of tertiary raceme, and moderate seed yield plant⁻¹ at 120 days, upto 150 days and up to 180 days. Cluster V recorded high seed yield plant⁻¹ at 120 days and seed yield plant⁻¹ up to 150 days. Cluster VIII recorded moderate mean values for all yield attributing characters, and recorded high seed yield plant⁻¹ up to 180 days.

Based on the five principal components, a cumulative of 89.39% of variation formed the basis meant for the divergence into different clusters. Main principal components are presented in Table 3. The D² statistic showed that effective length of tertiary raceme, days to 50% flowering of tertiary raceme, stem length to tertiary raceme and seed yield plant⁻¹ at 120 days contributed maximum towards genetic divergence Table 5.

All the three methods of grouping revealed a single concept of non- correspondence of genetic divergence and geographical diversity. Similar

Fig 1. Dendrogram showing relationship of 54 castor (Ricinus communis L.) genotypes in eight clusters as per hicrarchial cluster analyses.

Euclidean² Distance

Cluster No	Ι	I	III	IV	V	VI	VII	VIII	K
I	536.74	2985.12	1527.93	1885.02	4750.66	1081.34	10836.89	1244.96	20324.60
	(1906.44)	(3635.20)	(12462.72)	(12086.22)	(6662.59)	(10212.34)	(3928.84)	(4053.79)	
I		865.40	1391.60	1137.64	1539.00	3651.41	4094.95	2834.84	10242.58
		(1117.12)	(5672.78)	(22878.71)	(14309.40)	(19122.28)	(10059.42)	(9435.23)	
III			844.32	1568.90	2510.18	2480.71	6528.68	1632.16	14648.81
			(0)	(42169.76)	(30833.20)	(38621.39)	(22766.89)	(24300.27)	
IV				0.00	2442.63	1921.86	6514.10	2154.03	12981.14
				(1321.41)	(2587.43)	(2728.87)	(5105.26)	(5536.49)	
V					1319.26	6266.75	2525.63	4247.66	7813.98
					(978.46)	(2552.63)	(2594.37)	(2408.35)	
VI						0.00	12793.44	2039.34	21728.09
						(1385.93)	(5257.52)	(3854.80)	
VII							558.55	9686.24	2836.39
							(1594.62)	(2642.78)	
VIII								1737.73	19061.79
								(1795.94)	
K									0.00

Table2. Averge intra- and inter-culster D² values based on Mahalanobis' D² and Euclidean² values of cluster analysis.

Figures in parentheses are Eucledian² values of cluster analysis Bold and diagonal values indicate intra-cluster distances

Fig 2. Three dimensional graph showing relative position of 54 castor (*Ricinus communis* L.) genotypes based on PCA scores.

Table 3 Eigen values, proportion of the total variance represented by first seven principal components, cumulative per cent variance and component loading of different characters in castor (*Ricinus communis* L.).

Character	PC ₁	PC ₂	PC_3	PC_4	PC_{5}
Eigene Value (Root)	51763.560	6528.240	3807.820	2898.020	1916.790
% Var. Exp.	69.153	8.721	5.087	3.872	2.561
Cum. Var. Exp.	69.153	77.875	82.962	86.833	89.394
Days to 50% Flowering of	0.224	0.051	0.081	0.215	0.181
Primary Raceme					
Stem Length to Primary	0.235	0.047	0.357	-0.372	-0.091
Raceme (cm)					
Nodes to Primary Raceme	0.054	0.066	0.012	0.120	0.152
Total Length of Primary	0.042	-0.230	0.052	-0.026	-0.134
Raceme cm					
Effective Length of Primary	-0.068	-0.319	0.027	0.049	-0.197
Raceme					
Days to 80%maturity of	0.196	0.063	0.184	0.209	0.027
Primary Raceme					
Secondary Branches Plant ⁻¹	0.112	0.149	0.092	-0.080	0.071
Days to 50% Flowering of	0.297	-0.133	0.193	-0.021	-0.008
Secondary Raceme					
Nodes to Secondary	0.040	0.094	0.040	-0.145	0.026
Raceme					
Stem Length to Sec	0.026	0.026	-0.002	0.109	-0.190
Raceme cm					
Total Length of Sec	0.130	-0.180	0.108	-0.119	0.031
Raceme cm					
Effective Length Sec	-0.039	-0.203	-0.030	-0.065	-0.059
Raceme cm					
Days to 80% maturity of	0.193	0.154	0.104	0.394	0.021
Secondary Raceme					
Tertiary Branches Plant ¹	-0.033	0.092	-0.026	-0.224	0.153
Days to 50% Flowering of	0.333	-0.409	0.016	0.252	-0.153
Tertiary Raceme	a (==				
Nodes to Tertiary Racemes	0.175	0.055	0.211	0.039	0.131
Stem Length to Tertiary	-0.125	-0.411	0.433	-0.153	-0.096
Raceme cm	0.405	0.004	0.470	0.405	0.000
Effective Length of Tertiary	0.425	-0.284	-0.172	-0.105	0.266
Raceme	0.050	0.005	0.044	0.407	0.001
Days to 80% maturity of	0.059	-0.025	-0.041	0.497	0.021
100 Sood W/t of Drimony	0 105	0.076	0.069	0 1 4 0	0.201
Recome	-0.195	-0.076	0.000	-0.140	0.291
100 Sood Wt of Socondary	0 022	0.067	0 202	0.057	0 452
Pacomo	0.033	-0.007	0.295	-0.057	0.455
100 Seed Wt of Tertiany	0 288	0 103	0 142	0 228	0 420
Raceme	-0.200	-0.105	0.142	0.220	0.429
Oil Content (%)	-0 209	-0 220	_0 183	0.015	-0.030
L/B Ratio of Seed	-0.209	-0.220	0.103	0.010	0.030
Hanvest Index (%)	0.215	-0.017	-0 485	-0 166	0.011
Seed Vield Plant ⁻¹ At	_0.230	-0.002	-0.400	0.100	0.250
120 Davs	-0.200	J.721	0.101	0.100	0.100
Seed Yield Plant ⁻¹ up to	0 199	-0 068	-0 221	-0 118	0.213
150 Davs	0.100	0.000	0.221	0.110	0.210
Seed Yield Plant -1 upto	-0.164	0.033	0.179	0.067	0.283
180 Days					

PC= Principal component

Tertiary branches plant¹	3.6 (3.0) 3.1	3 (2.4) 3.0	(3.6) 3.3	(3.6) 2.9	(3.0) 4.0	(1.8) 2.4	(3.5) 2.0	(2.3) 3.6
Days to 80%matu- rity of sec raceme	110.2 (144.7) 130.7	(153.) (19.9	(156.5) 124.5	(110.1) 142.0	(113.5) 107.0	(123.1) 153.0	(128.0) 122.2	(130.5) 156.5
Effective length sec raceme cm	25.3 (26.1) 27.0	21.0 (37.8) 31.0	(21.3) 25.0	(24.3) 32.5	(29.6) 18.5	(41.3) 37.8	(26.7) 34.4	(34.7) 21.3
Total length of sec raceme cm	31.3 (31.1) 32.4		(27.9) 21.5	(29.1) 37.4	(35.3) 12.8	(46.5) 43.7	(31.2) 38.8	(40.3) 27.9
Stem length to sec raceme cm	59.4 (102.4) 90.1	90.1 (96.3) 81.5	(73.8) 95.1	(54.8) 116.6	(83.6) 35.2	(66.4) 96.3	(94.3) 70.0	(93.4) 73.8
Nodes to sec racem	9.3 (14.3)	(14.3) 10.5	(7.7) 8.15	(8.7) 12.6	(11.0) 6.6	(8.8) 14.3	(10.1) 9.7	(10.7) 7.7
Days to 50% flowering of sec raceme	78.2 (114.) 08.2	90.2 (133.7) 91.1	(140.5) 92.0	(76.8) 112.5	(86.6) 72.0	(86.6) 133.7	(94.2) 85.3	(100.5) 140.5
Second- ary branches plant ¹	2.4 (2.6)	2.3 (2.2) 2.6	(2.3) 2.8	(2.4) 2.5	(2.5) 2.1	(2.1) 2.2	(2.9) 2.1	(2.6) 2.0
Days to 80% maturity of pri race	93.1 (116.0) 104 8	(129.0) 95.9	(129.5) 107.0	(92.4) 113.9	(92.3) 85.5	(91.0) 129.0	(103.6) 92.6	(102.9) 129.5
Effective length of pri raceme	33.7 (41.2) 35.3		(29.6) 22.2	(31.4) 44.8	(36.2) 19.4	(43.2) 48.0	(30.3) 35.5	(45.7) 29.6
Total length of pri raceme cm	39.5 (48.3) 42 5	45.2 45.2	(37.1) 24.4	(37.3) 50.9	(42.3) 25.4	(44.3) 51.1	(36.0) 37.7	(52.6) 37.1
Nodes to pri racem	16.6 (24.8) 22.0	22.0 (25.8) 17.2	(37.4) 22.0	(16.3) 23.3	(16.9) 16.0	(15.4) 25.8	(21.0) 16.0	(19.8) 37.4
Stem length to pri raceme (cm)	89.7 (153.0) 114.0	(191.7) 96.2	(282.3) 103.9	(84.9) 146.1	(101.3) 100.4	(85.5) 191.7	(111.1) 87.4	(106.3) 282.3
Days to 50% flowering of Pri raceme	54.4 (81.7) 72.3	(86.2) (86.2) 60.0	(116.0) 76.0	(53.7) 79.5	(55.3) 52.0	(55.0) 86.2	(70.5) 56.3	(70.0) 116.0
Cluster No	 	- =	≥	>	⋝	F	II>	×

⁽Bold values under each character indicate maximum and minimum values).

Figures in the parentheses indicate mean values as per cluster analysis

Table 4. Mean values of clusters estimated from 54 genotypes of castor(*Ricinus communis* L.) based on D² and cluster analyses for characters 1-14

Table 4. Mean values of clusters estimated from 54 genotypes of castor(*Ricinus communis* L.) based on D² and cluster analyses form characters 15-28

	٩	E																	
Seed Yield/	Plant u to 180	days gı	139.5	(111.4)	125.0	(111.0)	142.6	(90.50)	81.5	(134.7)	108.5	(136.3)	93.4	(132.0)	111.0	(111.5)	118.4	(140.3)	90.5
Seed Yield/	Plant up to 120	days gm	139.5	(62.6)	82.6	(35.7)	133.1	(36.0)	55.3	(134.7)	69.5	(136.3)	93.4	(126.4)	35.7	(20.9)	115.1	(108.9)	36.0
Seed Yield/	Plant At 120 days	gm	91.8	(24.1)	35.7	(0.0)	75.2	(0.0)	14.9	(88.8)	28.1	(90.6)	54.3	(51.3)	0.0	(31.0)	57.9	(48.4)	0.0
Harvest Index	(%)		38.1	(33.1)	36.5	(33.8)	38.4	(30.2)	35.1	(38.1)	32.9	(38.1)	34.2	(38.4)	33.8	(34.9)	37.9	(38.4)	30.2
L/B Ratio of	Seed		1.4	(1.4)	1.4	(1.4)	1.4	(1.4)	1.3	(1.4)	1.4	(1.4)	1.4	(1.5)	1.4	(1.4)	1.5	(1.4)	1.4
Con Con	tent (%)		49.0	(49.0)	47.1	(47.4)	48.2	(47.0)	47.0	(49.2)	49.3	(47.8)	47.1	(46.6)	47.4	(46.4)	47.5	(49.0)	47.0
100 Seed Wt of	Teriary Raceme	gm	27.0	(23.1)	22.4	(26.7)	24.5	(20.7)	21.5	(27.1)	23.5	(23.6)	24.0	(21.3)	26.7	(22.2)	23.1	(24.8)	20.7
100 Seed Wt of	Secondary Raceme	gm	27.3	(25.4)	23.7	(28.9)	25.0	(26.1)	21.9	(26.8)	25.9	(25.2)	22.1	(22.7)	28.9	(22.9)	23.5	(25.8)	26.1
100 Seed Wt of	Primary Raceme	gm	25.9	(23.6)	22.3	(26.7)	24.3	(20.5)	20.8	(26.1)	24.3	(23.4)	23.7	(21.9)	26.7	(21.4)	23.1	(25.4)	20.5
Days to 80%	maturity of Ter	raceme	129.5	(162.8)	150.1	(172.5)	141.3	(171.5)	151.5	(128.0)	161.3	(137.3)	126.0	(144.3)	172.5	(146.8)	143.4	(153.2)	171.5
Effective lenath	of Ter raceme		18.9	(19.7)	20.6	(25.2)	23.3	(17.2)	13.7	(18.4)	19.5	(21.7)	15.3	(20.9)	25.2	(18.6)	20.4	(24.3)	17.2
Stem Lenath to	Tertiary Raceme	cm	66.7	(42.4)	34.0	(30.3)	46.3	(53.0)	46.4	(61.1)	51.2	(43.7)	37.0	(86.4)	30.3	(36.7)	64.1	(49.7)	53.0
Nodes to Tertiary	Raceme		9.6	(8.5)	7.8	(5.5)	8.5	(7.1)	9.9	(9.4)	8.6	(8.1)	6.5	(9.2)	5.5	(8.5)	8.6	(2.9)	7.1
Days to 50%	flowering of Ter	raceme	102.5	(142.5)	125.9	(153.7)	116.6	(163.0)	117.0	(100.7)	139.5	(112.9)	87.0	(113.6)	153.7	(120.7)	110.0	(125.8)	163.0
Cluster No			_		_		=		≥		>		⋝		M		III		×

(Bold values under each character indicate maximum and minimum values).

Figures in the parentheses indicate mean values as per cluster analysis

S.No	Character	Times ranked first	% Contribution
			towards divergence
1	Days to 50% flowering of primary raceme	28	1.96
2	Stem length to Irimary raceme	59	4.12
3	Nodes to primary raceme	0	0.00
4	Total length of primary raceme	3	0.21
5	Effective length of primary raceme	5	0.35
6	Days to 80% maturity of primary raceme	18	1.26
7	Secondary branches plant ¹	0	0.00
8	Days to 50% flowering of secondary raceme	9	0.63
9	Nodes to secondary raceme	0	0.00
10	Stem length to secondary raceme	2	0.14
11	Total length of secondary raceme	8	0.56
12	Effective length secondary raceme	2	0.14
13	Days to 80% maturity of secondary raceme	49	3.42
14	Tertiary branches plant ⁻¹	2	0.14
15	Days to 50% flowering of tertiary raceme	240	16.77
16	Nodes to tertiary racemes	3	0.21
17	Stem length to tertiary raceme	161	11.25
18	Effective length of tertiary raceme	435	30.40
19	Days to 80% maturity of tertiary raceme	34	2.38
20	100 seed weightt of primary raceme	24	1.68
21	100 seed weightt of secondary raceme	9	0.63
22	100 seed weightt of tertiary raceme	77	5.38
23	Oil content (%)	6	0.42
24	L/B ratio of seed	6	0.42
25	Harvest index (%)	76	5.31
26	Seed yield plant ⁻¹ at 120 days	154	10.76
27	Seed yield plant ¹ At 150days	10	0.70
28	Seed yield plant ¹ At 180 days	11	0.77

Table 5.	Contribution of different characters towards genetic divergence in 54 genotypes of
	castor (Ricinus communis L.)

findings were also reported by Bhatt and Reddy (1987) and Sevagaperumal *et al.* (2000). In broad sense all the three methods of classifying genotypes into different groups are equally useful but heirarchial cluster analysis gave an additional advantage of identifying sub-clusters of the major groups at different levels so that each small group can be critically analysed. The genotypes PPL 106, PPL 129, PPL 130, PPL 139 and Kiran as resulted from D^2 analysis and PPL 101, PPL 105, PPL 108, PPL 133, PPL 138, PPL 141 and PPL148 as resulted from cluster analysis and PPL 117 and PPL 147 are more divergent genotypes and can be used in breeding programme for character improvement in castor.

LITERATURE CITED

- Anderberg M R 1993. Cluster Analysis for Application. Academic press, New York.
- Bhatt D and Reddy T P 1987. Genetic divergence and heterosis in castor (*Ricinus communis* L.). Indian Journal of Botany 10: 21-26.
- Jackson J E 1991. A User's Guide to Principle Components. John Wiley and Sons, New York.
- Mahalanobis PC 1936. On the generalized distance in statistics. Proceedings of National Academy of Sciences (India) 2:49-55.
- Rao C R 1952. Advanced Statistical Methods in Biometric Research. John Willey and Sons Inc., New York: 390.
- Sevagaperumal S, Ramaswamy P and Muppidathi N 2000. Genetic divergence studies in castor (*Ricinus communis* L.). Madras Agricultural Journal 87 :241-243.

346