Pre- and Post-emergence Herbicides for Weed Control in Direct Sown Rice and their Residual effect on Succeeding Greengram

B Jyothi Basu, P V N Prasad, V R K Murthy, Y Ashoka Rani and P R K Prasad

Department of Agronomy, Agricultural College, ANGRAU Bapatla, Andhra Pradesh

ABSTRACT

In the present study optimisation of growth conditions of *L. acidophilus* MTCC 10307 in alginate beads was carried out with regard to substrate (growth media constituents- sorbitol, cocoa powder and corn starch), temperature (36, 38 and 40!) and inoculum concentration (100, 200 and 300µl). The study revealed that the maximum number of probiotic cells was found in sorbitol containing beads with the viability of 50.66×10^8 CFU/g (9.70 log CFU/g) than cocoa powder and corn starch. The optimum temperature reported was 38! (9.70 log CFU/g) and maximum probiotic count of 85.33×10^8 CFU/g (9.93 log CFU/g) was observed in encapsulated bead inoculated with 300μ l of bacterial suspension. Microcapsule prepared with these conditions may help to protect, isolate and control the release of probiotics which is of growing interest in many sectors of food product development.

Key words: Direct sown rice, Greengram, Herbicides, Seed yield, Uptake, Haulm yield and Drymatter accumulation

Rice is cultivated in 111 countries of all continents, except Antarctica. India and China are the leading producers as well as consumers of rice. In India, rice is grown in an area of 44.1 million hectares with a production of 108.9 million tonnes and productivity of 2391 kg ha⁻¹. In Andhra Pradesh, it is grown in an area of 2.4 million hectares with a production of 7.24 million tonnes and productivity of 3022 kg ha⁻¹ (Ministry of Agriculture, Government of India, 2016-17). Cereal-cereal crop sequences are more exhaustive and put heavy demand on soil resources as compared to cereal-legume and cerealoilseed sequences along with adverse effect on soil condition (Kumar and Yadav, 1993). Legumes are reported to have favourable impact on the soil fertility and help in increasing the yield of succeeding rice crop (Quayyum and Maniruzzaman, 1996). Inclusion of pulses, oilseeds and vegetables in the system has been found more beneficial than cereal after cereal (Kumpawat, 2001; Raskar and Bhoi, 2001).

Rice-greengram (cereal-legume) sequence is an age old and one of the best cropping sequence followed in the Krishna Agro-climatic Zone of Andhra Pradesh, India. The potential for increasing the productivity of both of these crops *i.e.*, rice and

greengram in sequence is tremendous with proper weed management practices. Cultivation of pulses in rice fallows involves sowing of pulse seed by broadcast in the standing rice crop (relay cropping), 2-3 days before it's harvest. The crop survival depends on residual effect of herbicides which were applied to preceding crop thus sown survives entirely on the residual moisture and fertility. The productivity of the crop in this system is often limited by poor crop stand, weed menace and terminal moisture stress. Thus, the significance of optimum plant population, rationalization of moisture supply and weed management under rice fallow conditions have to be investigated to increase the productivity of rice fallow greengram. Keeping above facts in mind, an attempt has been made to study the efficacy of sequential application of herbicides in direct sown rice and their residual effect on succeeding greengram.

MATERIALS AND METHODS

A field experiment was conducted at the Agricultural College Farm, Bapatla, Guntur, Andhra Pradesh. The soil of experimental field was sandy loam in texture. The experiment was conducted for two successive *kharif* and *rabi* of 2015-16 and 2016-

Dose (g ha-1) Treatments Time (DAS) T_{1.} Pyrazosulfuron ethyl *fb* Azimsulfuron 25 fb 20 Prefb Post T₂ Pyrazosulfuron ethyl *fb* Bispyribac-sodium 25 fb 25 Pre fb Post 60 + 500 fb 20 T_{3} . Bensulfuron methyl + Pretilachlor with safener *fb* Azimsulfuron Pre fb Post 60 + 500 fb 25T₄ Bensulfuron methyl + Pretilachlor with safener *fb* Bispyribac-sodium Pre fb Post T_{5.} Oxadiargy1*fb* Azimsulfuron 75 fb 20 Pre fb Post T₆ Oxadiargy1*fb* Bispyribac-sodium 75 fb 25 Pre fb Post Pre fb Post fb T₇ Pyrazosulfuron ethyl *fb* Azimsulfuron *fb* Metsulfuron methyl + Chlorimuron ethyl 25 fb 20 fb 4 Post T₈ Pyrazosulfuron ethyl *fb* Bispyribac-sodium *fb* Metsulfuron methyl + Chlorimuron Pre fb Post fb 25 fb 25 fb 4 ethyl Post T_{9} Bensulfuron methyl + Pretilachlor with safener *fb* Azimsulfuron *fb* Metsulfuron $60 + 500 \, fb \, 20$ Pre fb Post fb methyl + Chlorimuron ethyl *fb* 4 Post T_{10} Bensulfuron methyl + Pretilachlor with safener *fb* Bispyribac-sodium *fb* Metsulfuron 60 + 500 fb 25Pre fb Post fb methyl + Chlorimuron ethyl *fb* 4 Post Pre fb Post fb T₁₁ Oxadiargyl *fb* Azimsulfuron *fb* Metsulfuron methyl + Chlorimuron ethyl 75 fb 20 fb 4 Post Pre fb Post fb T₁₂ Oxadiargyl *fb* Bispyribac-sodium *fb* Metsulfuron methyl + Chlorimuron ethyl 75 fb 25 fb 4 Post T_{13.} Weed free --T_{14.} Weedy check

17 in Krishna Agro-climatic Zone of Andhra Pradesh. There were fourteen treatments were randomly

Note: Weed free condition maintained by employing manual weeding at regular intervals

Greengram plants enclosed in an area of 0.25 m² from the sampling area were removed at maturity. The plant samples so collected were sundried and later oven dried at 60°C till a constant weight was obtained. The data was computed and expressed in kg ha⁻¹. The total number of pods was counted from the ten randomly selected plants in the net plot area and averaged plant⁻¹. At maturity all the above ground greengram biomass from each net plot area was harvested and transported to the threshing floor. After drying in sun for seven days, the biomass from each plot was weighed before subjecting it for threshing. After threshing, weight of grain was recorded plotwise and expressed in kg ha⁻¹.

Uptake was calculated by multiplying the nutrient content with the respective dry matter weight of grain and straw, which were summed up to estimate total nutrient uptake at harvest.

Nutrient uptake (kg/ha) =

Nutrient concentration (%) x weight of dry matter (kg/ha)/100

Statistical analysis for drymatter partitioning and yield parameters were done by following the analysis

of variance technique suggested by Gomez and Gomez (1984). Statistical significance was tested by applying F-test at 0.05 level of probability and critical difference (CD) were calculated for those parameters.

allocated and replicated thrice in Randomized

Complete Block design as mentioned below.

RESULTS AND DISCUSSION

Drymatter accumulation of greengram at harvest (kg ha⁻¹)

Drymatter accumulation in the sequence greengram crop was recorded at maturity during both the years of study and the same was tabulated, analyzed and presented in Table 2. The results indicated that weed management practices had no influence on drymatter accumulation of the succeeding greengram crop at harvest. This indicates that the residual effects of herbicides may not be for longer periods and they will not influence the growth of the succeeding crop.

Number of pods plant⁻¹

The number of pods plant⁻¹ in greengram was not influenced by the weed management practices done in rice in both the years of study.

Tucotmonts	Dose	Time	Dry matter a	accumulation	Number of I	oods plant ⁻¹
LI CAUTICIUS	(g ha ⁻¹)	(DAS)	2015	2016	2015	2016
T_{1} . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb 20	Pre fb Post	1785	2128	19.3	20.9
T_2 . Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium	25 fb 25	Pre fb Post	1752	2197	18.6	19.2
T_3 . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron	60 + 500 fb 20	Pre fb Post	1798	2253	19.6	19.2
T_4 . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium	60 + 500 fb 25	Pre fb Post	1731	2197	19.4	18.4
T ₅ . Oxadiargyl <i>fb</i> Azimsulfuron	75 fb 20	Pre fb Post	1690	2148	18.7	18.2
T ₆ . Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre fb Post	1684	2061	18.0	18.6
T_{7} . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 <i>fb</i> 20 <i>fb</i> 4	Pre fb Post fb Post	1857	2197	19.6	19.0
T_8 Pyrazosulfuron ethyl $/\!\!/b$ Bispyribac-sodium $/\!\!/b$ Metsulfuron methyl + Chlorimuron ethyl	25 fb 25 fb 4	Pre fb Post fb Post	1814	2171	19.3	18.1
T ₉ , Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 fb 20 fb 4	Pre fb Post fb Post	1833	2277	20.2	20.6
T ₁₀ . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 25 <i>fb</i> 4	Pre fb Post fb Post	1813	2245	19.5	19.5
T_{11} . Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 20 fb 4	Pre fb Post fb Post	1782	2202	19.2	19.4
T_{12} . Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 25 fb 4	Pre fb Post fb Post	1770	2183	19.1	20.0
T ₁₃ . Weed free	1	I	1863	2311	21.1	20.3
T ₁₄ . Weedy check	I	I	1681	1998	17.8	18.2
SEm +			70	71	0.7	0.8
CD (P = 0.05)	I	•	SN	NS	NS	NS

Table 1. Drymatter accumulation (kg ha⁻¹) and number of pods plant⁻¹ of greengram at harvest as influenced by weed management practices in rice-greengram sequence during 2015-16 and 2016-17 rabi season

2. Seed yield and haulm yield of greengram as influenced by weed management practices in rice greengram sequence during 20 and 2016-17 <i>rabi</i> season	115-16	-1-
2. Seed yield and haulm yield of greengram as influenced by weed management practices in rice greengram seq and 2016-17 <i>rabi</i> season	uence during 20	II and the start of the L
2. Seed yield and haulm yield of greengram as influenced by weed management practices i and 2016-17 <i>rabi</i> season	n rice greengram seq	4-1-1 FFFFFF
2. Seed yield and haulm yield of greengram as influenced by weed managem and 2016-17 <i>rabi</i> season	ient practices i	T:
2. Seed yield and haulm yield of greengram as influenced b and 2016-17 <i>rabi</i> season	y weed managem	
a	e 2. Seed yield and haulm yield of greengram as influenced by and 2016-17 <i>rabi</i> season	

	Dose	Time	Seed yield	d (kg ha ⁻¹)	Haulm yie	ld (kg ha ⁻¹)
L'ÉQUITERUS	(g ha ⁻¹)	(DAS)	2015	2016	2015	2016
T_1 . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb 20	Pre fb Post	548	632	1041	1277
T ₂ Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium	25 fb 25	Pre fb Post	532	624	972	1274
T_3 Bensulfuron methyl + Pretilachlor with safener fb Azimsulfuron	60 + 500 fb 20	Pre fb Post	556	652	1106	1303
T_4 , Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium	60 + 500 fb 25	Pre fb Post	548	548	1035	1207
T ₅ Oxadiargyl <i>fb</i> Azimsulfuron	75 fb 20	Pre fb Post	537	625	923	1408
T_6 Oxadiargyl $/b$ Bispyribac-sodium	75 fb 25	Pre fb Post	529	617	1019	1237
T_7 . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 fb 20 fb 4	Pre <i>fb</i> Post <i>fb</i> Post	559	652	1063	1187
T_8 Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 fb 25 fb 4	Pre /b Post /b Post	537	655	266	1286
T_9 , Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 fb 20 fb 4	Pre fb Post fb Post	571	662	1072	1280
T ₁₀ . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 25 <i>fb</i> 4	Pre fb Post fb Post	565	656	1064	1272
T_{11} . Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 20 fb 4	Pre fb Post fb Post	530	649	964	1263
T ₁₂ Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 25 fb 4	Pre fb Post fb Post	534	642	957	1293
T ₁₃ . Weed free			585	662	1057	1298
T ₁₄ . Weedy check	I	I	523	594	926	1253
SEm +	1	1	19	31	49	66
CD (P = 0.05)	I	I	NS	NS	NS	NS

ractices in rice-greengram	
nan agement p	
lifferent weed r	
influenced by c	
of greengram as	<i>rabi</i> season
1a-1) at harvest	16 and 2016-17
en uptake (kg l	e during 2015-
Table 3. Nitrog	sequent

Tturnet.	Dose	Time	20	15	20	16
L reauneurs	(g ha' ¹)	(DAS)	Grain	Haulm	Grain	Haulm
T_1 . Pyrazosulturon ethyl fb Azimsulturon	25 fb 20	Pre fb Post	18.0	8.9	21.7	10.6
T_2 Pyrazosulturon ethyl fb Bispyribac-sodium	25 fb 25	Pre fb Post	18.0	8.5	20.6	10.7
T_3 . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron	60 + 500 fb 20	Pre fb Post	18.7	9.3	21.3	11.0
T_4 , Bensulfuron methyl + Pretilachlor with safener fb Bispyribac-sodium	60 + 500 fb 25	Pre fb Post	18.1	8.9	18.4	10.4
T ₅ . Oxadiargyl <i>fb</i> Azimsulfuron	75 fb 20	Pre fb Post	17.6	7.7	21.2	11.9
T ₆ . Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre fb Post	18.1	8.7	20.5	10.8
T7. Pyrazosulfuron ethyl fb Azimsulfuron fb Metsulfuron methyl + Chlorimuron ethyl	25 fb 20 fb 4	Pre <i>fb</i> Post <i>fb</i> Post	19.1	6.8	21.1	10.3
T_8 . Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 <i>fb</i> 25 <i>fb</i> 4	Pre fb Post fb Post	18.1	8.3	22.0	10.7
T ₉ . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 fb 20 fb 4	Pre fb Post fb Post	18.7	9.2	22.4	11.0
T_{10} . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 25 <i>fb</i> 4	Pre fb Post fb Post	18.7	8.8	22.0	10.9
T_{11} . Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 20 fb 4	Pre <i>fb</i> Post <i>fb</i> Post	18.2	8.5	21.6	10.5
T _{12.} Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 25 fb 4	Pre fb Post fb Post	18.1	8.2	21.5	10.7
T ₁₃ . Weed free			19.1	9.0	22.0	11.4
T ₁₄ . Weedy check	•	1	17.5	8.1	19.9	11.0
SEm ±			0.7	0.5	1.1	0.8
CD (P = 0.05)	•		NS	NS	NS	NS

- ·	
different	
Phosphorus uptake (kg ha ⁻¹) at harvest of greengram as influenced by	ence during zuts-to and zuto-t/ <i>ran</i> season

Trootin onto	Dose	Time	20	15	20	16
1 cauncius	(g ha ⁻¹)	(DAS)	Grain	Haulm	Grain	Haulm
T ₁ . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 fb 20	Pre <i>fb</i> Post	2.0	2.3	2.5	2.9
T_2 . Pyrazosulfuron ethyl fb Bispyribac-sodium	25 <i>fb</i> 25	Pre fb Post	1.8	2.1	2.3	2.8
T_3 . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron	60 + 500 fb 20	Pre fb Post	1.9	2.7	2.6	3.2
T_4 . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium	60 + 500 fb 25	Pre fb Post	1.8	2.3	2.2	2.5
T ₅ . Oxadiargyl <i>fb</i> Azimsulfuron	75 fb 20	Pre fb Post	1.8	2.1	2.4	3.1
T ₆ . Oxadiargyl <i>fb</i> Bispyribac-sodium	75 fb 25	Pre fb Post	1.9	2.2	2.3	2.8
T_{7} Pyrazosulfuron ethyl fb Azimsulfuron fb Metsulfuron methyl + Chlorimuron ethyl	25 fb 20 fb 4	Pre <i>fb</i> Post <i>fb</i> Post	1.8	2.4	2.5	2.6
T ₈ . Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 fb 25 fb 4	Pre <i>fb</i> Post <i>fb</i> Post	1.8	2.1	2.5	3.1
T ₉ . Bensulfuron methyl + Pretilachlor with safener fb Azimsulfuron fb Metsulfuron methyl + Chlorimuron ethyl	60 + 500 <i>fb</i> 20 <i>fb</i> 4	Pre fb Post fb Post	2.0	2.3	2.6	3.0
T_{10} . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 fb 25 fb 4	Pre fb Post fb Post	2.1	2.4	2.7	3.0
T_{11} . Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 20 fb 4	Pre fb Post fb Post	1.8	2.2	2.6	2.8
T ₁₂ . Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 25 fb 4	Pre <i>fb</i> Post <i>fb</i> Post	1.8	2.2	2.5	3.1
T ₁₃ . Weed free	-	I	2.3	2.3	2.7	3.1
T ₁₄ . Weedy check		1	1.9	2.2	2.4	2.9
SEm ±	•	1	0.1	0.1	0.2	0.3
CD (P = 0.05)			NS	NS	NS	NS

greengram as influenced by different weed management practices in rice-greengram se	season
f greeng	season
arvest of	6-17 rabi
) at h	2016
ha ⁻¹)	and
e (kg	12-16
uptak	ng 201
Potassium	quence duri
Table 5.	-

	-			-		-
Treatments	Dose	Time	20	15	20	16
1 I CAULIVIUS	(g ha ⁻)	(DAS)	Grain	Haulm	Grain	Haulm
T_{1} . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron	25 <i>fb</i> 20	Pre fb Post	6.2	18.0	7.2	21.3
T_2 . Pyrazosulfuron ethyl <i>fb</i> Bispyribac-sodium	25 <i>fb</i> 25	Pre <i>fb</i> Post	5.9	16.1	7.2	20.6
T_3 , Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron	60 + 500 fb 20	Pre fb Post	6.3	18.4	7.2	21.9
T_4 . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium	60 + 500 fb 25	Pre <i>fb</i> Post	6.1	17.2	6.1	20.0
T ₅ . Oxadiargyl <i>fb</i> Azimsulfuron	75 fb 20	Pre fb Post	6.1	15.8	7.1	23.6
T_{6} . Oxadiargyl <i>fb</i> Bispyribac-sodium	75 <i>fb</i> 25	Pre <i>fb</i> Post	6.1	17.1	7.1	20.2
T_7 . Pyrazosulfuron ethyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	25 <i>fb</i> 20 <i>fb</i> 4	Pre fb Post fb Post	6.3	18.0	7.4	19.6
T ₈ . Pyrazosulfuron ethyl fb Bispyribac-sodium fb Metsulfuron methyl + Chlorimuron ethyl	25 fb 25 fb 4	Pre fb Post fb Post	5.9	17.1	7.3	21.7
T_{9} Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	$60 + 500 fb \ 20 fb \ 4$	Pre fb Post fb Post	6.4	18.1	7.7	20.8
T_{10} . Bensulfuron methyl + Pretilachlor with safener <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	60 + 500 fb 25 fb 4	Pre fb Post fb Post	6.3	17.5	7.4	21.3
T_{11} . Oxadiargyl <i>fb</i> Azimsulfuron <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 20 fb 4	Pre fb Post fb Post	6.0	16.2	7.2	20.9
T ₁₂ . Oxadiargyl <i>fb</i> Bispyribac-sodium <i>fb</i> Metsulfuron methyl + Chlorimuron ethyl	75 fb 25 fb 4	Pre fb Post fb Post	6.0	16.0	7.2	20.8
T_{13} . Weed free	1	1	6.4	18.0	7.5	21.9
T ₁₄ . Weedy check	1	1	5.8	16.5	6.8	21.1
SEm +			0.2	0.9	0.3	1.6
CD (P = 0.05)	1	1	NS	NS	NS	NS

Seed yield of greengram (kg ha⁻¹)

The seed yield of succeeding greengram crop after rice was non significant among the treatments during both the years of study. This indicates that there was no marked difference among the treatments and the impact of herbicides applied to rice. The applied herbicides which sufficiently got degraded in the soil had no residual effect left to effect the germination, dry matter, number of pods as well as seed and haulm yields of greengram. This phenomenal manifestation indicate that the different weed management practices applied to rice had no adverse or favourable effect on growth and yield of succeeding greengram crop. Similar results were also reported by Kumaran *et al.* (2015) that herbicides applied to rice crop had no residual effect on succeeding crops growth and yields.

Haulm yield (kg ha⁻¹)

The haulm yield of succeeding greengram crop was also non significant during the both the years of study, which indicated that the sequentially applied herbicides to rice had no effect on succeeding greengram haulm yield. This might be due to no residual effect of herbicides and their persistence in the soil to effect the succeeding crop.

Nutrient uptake by greengram

Nitrogen, phosphorous and potassium uptake (kg ha⁻¹) estimated at harvest of greengram was not significantly influenced by herbicidal treatments taken up in preceding rice crop during both the years of study. This indicated there was no residual effect of weed management practices on the succeeding crop. Studies on succeeding greengram crop grown after rice revealed that the weed management practices had exhibited no significant impact on growth, dry matter accumulation, yield and nutrient uptake by crop.

LITERATURE CITED

- Gomez K A and Gomez A A 1984. Statistical Procedures for Agricultural Research (2 ed.). John wiley and sons, New York, 680 p.
- Kumar Alok and Yadav D S 1993. Effect of long term fertilization on soil fertility and yield under rice-wheat cropping system. *Journal of Indian Society of Soil Science* 41(1): 178-180.

Kumaran S T, Kathiresan G, Murali Arthanari P, Chinnusamy C and Sanjivkumar V 2015. Efficacy of new herbicide (bispyribac sodium 10% SC) against different weed flora, nutrient uptake in rice and their residual effects on succeeding crop of greengram under zero tillage. *Journal of Applied and Natural Science*. 7(1): 279-285

- **Kumpawat B S 2001.** Production potential and economics of different crop sequences. *Indian Journal of Agronomy* 46(3): 421-424.
- Ministry of Agriculture, Government of India. 2016-17. https:// www.indiastat.com/ default.aspx
- Quayyum M N and Maniruzzaman A F M 1996. Effect of preceding crops on yield of succeeding transplanted aman rice (*Oryza sativa*). *Indian Journal of Agronomy* 41(3): 349-353.
- Rammu Lodhi 2016. Efficacy of Bensulfuron methy 1+ Pretilachlor against Weeds in Transplanted Rice. *M.Sc Thesis*. Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, India
- Raskar B S and Bhoi P G 2001. Production and economics of winter sorghum (Sorghum bicolor) summer vegetables cropping sequences under irrigated conditions of western Maharashtra. *Indian Journal of Agron*omy 46(1): 17-22.
- Singh R G, Singh S, Singh V and Gupta R K 2010. Efficacy of Azimsulfuron applied alone and tank mixed with Metsulfuron+Chlorimuron (Almix) in dry direct seeded rice. *Indian Journal of Weed Science*. 42(3 & 4): 168–172.
- Subhalakshmi C and Venkataramana M 2008. Effect of different weed management practices on growth, nutrient uptake by transplanted *rabi* rice and weeds. *Crop Research.* 35 (3): 165-168.
- Yadav D B, Ashok Yadav and Punia S S 2009. Evaluation of bispyribac-sodium for weed control in transplanted rice. *Indian Journal* of Weed Science. 41 (1 & 2): 23-27.