Survey on Incidence of Major Pests and Their Natural Enemy Complex in Direct Seeded Rice vs Transplanted Rice

N V V N Mounika, C Sandhya Rani, C V Rama Rao, V Monoj Kumar and Ch Chiranjeevi

Department of Entomology, Agricultural College, ANGRAU, Bapatla

ABSTRACT

The survey was conducted at three stages of crop growth *viz.*, active tillering, panicle initiation (PI) and harvesting stages of Direct seeded Rice (DSR) and Puddled Transplanted Rice (PTR) fields of ten mandals *viz.*, Bapatla, Ponnur, Karlapalem, Cherukupalli, Amarthaluru, Pittalavanipalem, Nagaram, Kakumanu, Vatticherukuru and Pedanandipadu. Observations were recorded on incidence of BPH, WBPH, leaf folder, coccinellids, mirid bugs and spiders. The mean population of BPH, WBPH and natural enemies was higher in PTR when compared to DSR. Leaf folder infestation and damage was more in DSR when compared to PTR. Among surveyed mandals, Bapatla recorded the higher number of BPH (9.04/hill), whereas, higher number of WBPH were recorded at Vatticherukuru (4.24/hill) mandal during PI stage in PTR. The highest leaf folder larval number (1.31per hill) and damage was observed at Cherukupalli (5.54%/hill) DSR.

Survey provides a high level of general capability in representing a large population. As compared to other methods of data gathering, survey able to extract data that are near to the exact attributes of the population. Survey on natural enemies viz., predators, parasitoids and pathogens which are specific against crop pests will indicate their impact on the population dynamics of the pest and play an important role in keeping the pest populations under control by evaluating the potential for the biological control of the pest. In India, rice is grown mainly by transplanting the seedlings into the puddled to the soil, which require a large amount of water and labors. In recent years both are scarce and expensive, making rice production less profitable. Also, drudgery involved in transplanting is of serious concern. All these factors demanded major shift from Puddled Transplanted Rice (TR) production to Direct Seeded Rice (DSR) in irrigated and assured or high rainfall areas. Rice is one of the cereal food crop half of the population of the world, it is an important target crop to provide food and livelihoods for millions. Rice is mainly grown by direct-seeded rice and transplanted rice. The recent years both the methods of sowing were scarce, expensive and less profitable coupled with excessive use of nitrogenous fertilizers and abuse of agrochemicals have further aggravated the pest

menace in transplanted conditions. All these factors demanded a major shift from Transplanted Rice (TR) production to Direct Seeded Rice (DSR) in irrigated and assured or high rainfall areas (Edirisinghe and Bambaradeniya, 2006). Direct seeded rice technique is becoming popular nowadays because of its lowinput demanding nature. This method has become inevitable for tail-end farmers who receive less amount of irrigation water. Numerous guilds of insect pests attacked by Paddy crop in the field, but few cause significant losses. Losses caused by insect pests are the main constraints in achieving a high yield of rice (Rai et al., 2000). The rice plant is subject to attack by more than 100 species of insects and 20 of them can cause economic damage. The major insect pests attacking rice are rice leaffolder, Cnaphalocrocis medinalis (Guenee), brown planthopper, Nilaparvata lugens (Stal), whitebacked planthopper, Sogatella furcifera (Horvath) and yellow stem borer, Scirpophaga incertulas (Walker). The loss due to yellow stem borer ranged from 3 to 65 percent (Muralidharan and Pasalu, 2005) and leaf folder to the extent of 5 to 39 percent (Shanmugam et al., 2006). A change from transplanting to direct seeding may affect the status of various pests. Among the major insect pests attacking rice are yellow stem borer, leaf folder, green leafhopper, grasshopper, earhead

bug, white leafhopper. The average yield loss in rice have been accounted for 30% loss due to stem borers, while plant hoppers cause 20%, gall midge 15%, leaf folder 10% and other pests 25%, respectively (Krishnaiah and Varma, 2015). This study describes possible changes in pest status in directseeded rice fields. It is felt that a complex and rich web of general and specific insect pests of directseeded rice (DSR) ecosystem is to be studied.

MATERIAL AND METHODS

A survey was conducted during Kharif, 2019 from randomly selected ten mandals of paddy growing areas in Guntur district. The ten mandals include Bapatla, Ponnur, Karlapalem, Cherukupalli, Amarthaluru, Nagaram, Pittalavanipalem, Kakumanu, Vatticherukuru and Pedanandipadu Observations were recorded on number of BPH, WBPH, leaf folder, coccinellids, mirid bugs and spiders from randomly selected 10 hills during active tillering, panicle initiation and harvesting stages of crop growth. The data on the population of planthoppers, leaf folder larvae, spiders, mirid bugs and coccinellids was transformed into square root values. Whereas, the data on the leaf damage by leaf folder were transformed into arc sine values. The data subjected to t- test analysis to compare the pest incidence in direct seeded and transplanted plots.

RESULTS AND DISCUSSION

At active tillering stage, the no. of BPH population per hill ranged from 3.62 (Kakumanu) to 5.41 (Karlapalem) and 4.24 (Kakumanu) to 7.86 (Nagaram) number per hill in DSR and PTR. At PI stage population of BPH ranged from 5.04 (Kakumanu) to 9.04 (Bapatla) and 5.51 (Cherukupalli) to 11.22 (Bapatla) and at harvesting stage, the no. of BPH ranged from 0.46 (Pedanandipadu) to 1.72 (Nagaram) and 1.02 (Karlapalem) to 2.40 (Cherukupalli) number per hill in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation.

The data on mean number of BPH was recorded as 4.63 (DSR) and 5.96 (PTR) number per hill at active tillering stage, increased in number at PI stage with 6.30 and 7.85 per hill but reduced at harvesting stage with 0.97 and 1.51 BPH per hill was recorded in DSR and PTR respectively. The results

on population of BPH were found to be statistically lower in Direct Seeded Rice (DSR) when compared to the Puddled Transplanted Rice (PTR) (Table.1).

Regarding WBPH (Table.2) also, same trend was noticed in the number of WBPH was found to be statistically lower in DSR when compared to the PTR. The data on mean population of WBPH was 2.23 (DSR) and 3.14 (PTR) per hill at active tillering stage. At PI stage 3.45 and 3.75 per hill and at harvesting stage 0.45 and 0.51 BPH per hill in DSR and PTR respectively.

The WBPH (population ranged from 1.84 (Nagaram) to 2.76 (Kakumanu) and 2.70 (Bapatla) to 3.56 (Cherukupalli) number per hill at active tillering stage, while at panicle initiation stage from 2.82 (Bapatla) to 4.12 (Karlapalem) and 3.32 (Bapatla) to 4.24 (Vatticherukuru) number per hill and at harvesting stage, data ranged from 0.30/hill (Nagaram) to 0.62/hill (Pedanandipadu) and 0.38/hill (Nagaram) to 0.90/hill (Karlapalem) in DSR and PTR respectively. There was a significant difference among the mandals and also method of rice cultivation.

The results pertaining to the larval population of leaf folder revealed that, infestation was statistically lower in PTR when compared to DSR in all the surveyed mandals. The data on mean population of leaf folder was 0.90 (DSR) and 0.60 (PTR) per hill at active tillering stage. At PI stage, 1.02 and 0.71 per hill and at harvesting stage 0.21 and 0.14 per hill in DSR and PTR respectively.

At active tillering stage, the leaf folder larvae population per hill ranged from 0.53 (Bapatla) to 1.27 (Cherukupalli) and 0.35 (Karlapalem) to 0.89 (Pedanandipadu) number per hill. At panicle initiation stage, it ranged from 0.42 (Karlapalem) to 1.31 (Cherukupalli) and 0.30 (Karlapalem) to 1.03 (Pedanandipadu) number per hill and at harvesting stage, the leaf folder larvae population ranged from 0. 14 (Amarthaluru) to 0.29 (Bapatla) and 0.06 (Vatticherukuru) to 0.24 (Kakumanu) number per hill in DSR and PTR respectively. (Table.3)

The damage by leaf folder recorded at active tillering stage was 4.37 and 2.80, but results revealed a decreasing trend in leaf damage at PI stage with 2.43 and 1.63 and at harvesting stage 1.96 and 1.14 per hill in DSR and PTR respectively.

At active tillering stage, the per cent damage of leaf folder per hill ranged between 3.34 (Amarthaluru) to 5.54 (Cherukupalli) and 1.84 (Karlapalem) to 3.84 (Pedanandipadu) in DSR and PTR, at PI stage, it ranged from 1.70 (Amarthaluru) to 3.02 (Cherukupalli) and 1.22 (Karlapalem) to 2.44 (Cherukupalli) in DSR and PTR and at harvesting stage, the per cent damage of leaf folder per hill ranged from 1.10 (Pedanandipadu) to 2.64 (Kakumanu) and 0.66 (Cherukupalli) to 1.90 (Pittalavanipalem) in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation. (Table.4)

Regarding natural enemies, mirid bugs, spiders and coccinellids were recorded in both rice ecosystems of surveyed ten mandals. The number of the above natural enemies was statistically lower in DSR when compared to PTR in ten mandals surveyed at three stages. The data on mean number of mirid bugs collected at active tillering stage, was recorded as 2.18 (DSR) and 3.60 (PTR) per hill. At PI stage 1.20 and 1.92 and at harvesting stage it was recorded as 0.67 and 0.88 per hill in DSR and PTR respectively.

At active tillering stage, the mirid bug (Table.5) population ranged from 1.84 (Ponnur) to 5.42 (Karlapalem) and 3.12 (Pedanandipadu) to 6.04 (Karlapalem) number per hill in DSR and PTR. At PI stage, the mirid bug population ranged from 0.76 (Cherukupalli) to 1.76 (Pittalavanipalem) and 1.53 (Ponnur) to 2.66 (Kakumanu) number per hill in DSR and PTR, respectively. At harvesting stage, the mirid bug population ranged from 0.44 (Nagaram) to 1.04 (Kakumanu) and 0.58 (Nagaram) to 1.22 (Amarthaluru) number per hill in DSR and PTR respectively and there was a significant difference among the mandals and also method of rice cultivation.

The mean population of spiders (Table.6) was 0.50 (DSR) and 0.63 (PTR) per hill at active tillering stage. But, increased in number from PI stage with 0.78 and 0.92 per hill to harvesting stage 1.12 and 1.30 per hill in DSR and PTR, respectively.

At active tillering stage, the no. of spiders population ranged from 0.24 (Kakumanu) to 0.82 (Pedanandipadu) and 0.36 (Bapatla) to 0.86 (Pedanandipadu) number per hill in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation. At PI stage, the spider population ranged from 0.44 (Pittalavanipalem) to 1.13 (Ponnur) and 0.70 (Karlapalem) to 1.32 (Nagaram) number per hill in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation. At harvesting stage, the spider population ranged between 0.66 (Cherukupalli) to 1.50 (Pedanandipadu) and 0.80 (Amarthaluru) to 1.70 (Pittalavanipalem) number per hill in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation.

The data on mean number of coccinellids (Table.7) was recorded as 0.37 (DSR) and 0.54 (PTR) per hill active tillering stage. At PI stage, 0.67 and 0.79 per hill and at harvesting stage 0.95 and 1.14 per hill, in DSR and PTR respectively and there was a significant difference among the mandals and also method of rice cultivation.

At active tillering stage, the coccinellid population ranged from 0.22 (Ponnur) to 0.56 (Amarthaluru) and 0.30 (Pedanandipadu) to 0.94 (Amarthaluru) number per hill in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation. At PI stage, the coccinellid population ranged between 0.51 (Karlapalem) to 1.02 (Pittalavanipalem) and 0.58 (Kakumanu) to 1.11 (Pittalavanipalem) number per hill in DSR and PTR respectively and there was a significant difference among the mandals and also method of rice cultivation. At harvesting stage, the coccinellid population ranged from 0.72 (Kakumanu) to 1.20 (Nagaram) and 0.84 (Karlapalem) to 1.32 (Nagaram) number per hill in DSR and PTR, respectively and there was a significant difference among the mandals and also method of rice cultivation.

The results were in accordance with Ashrith et al. (2016) who reported that incidence of BPH was more in puddled transplanted rice when compared to the direct seeded rice under unprotected situation. Parasappa et al. (2017) investigated that WBPH infestation started from last week of July and the mean population (nymphs and adults per hill) was high in mechanical transplanted rice (4.40). The present findings were also in conformity with Ashrith et al. (2017), who reported that the number of leaf folder was more in direct seeded rice than the transplanted rice. Ashrith et al. (2017) who reported that the population of mirid bugs, which is a specific predator on BPH found to be more in transplanted rice than direct seeded rice. Ashrith et al. (2016) who reported that coccinellids population was more in transplanted rice i.e., 2.48/hill and 1.96/hill compared to direct seeded rice. Girish et al. (2015)

				No. of BPI	I Per Hill		
S. No.	Name of the mandal	Active Tille	ring Stage	Panicle Initi	ation Stage	Harvestin	ng Stage
		Direct Seeded Rice	Transplanted Rice	Direct Seeded Rice	Transplanted Rice	Direct Seeded Rice	Transplanted Rice
-	Banatla	4.86	6.24	9.04	11.22	1.04	1.8
-	Dapana	-2.2	-2.5	-3.01	-3.35	-1.02	-1.34
ç	Desserve	4.22	5.08	7.82	9.72	0.84	1.16
٦	I OIIIIII	-2.05	-2.25	-2.8	-3.12	-0.92	-1.08
"	V orlon olom	5.41	6.04	7.91	9.38	96.0	1.02
n		-2.32	-2.46	-2.81	-3.06	-0.98	-1.01
K	Chambradi	4.82	5.14	5.22	5.51	0.88	2.4
r	Circl us up dati	-2.19	-2.27	-2.28	-2.35	-0.94	-1.55
v	A second holivery	5.12	5.52	6.44	8.44	0.66	1.75
n		-2.26	-2.35	-2.54	-2.91	-0.81	-1.32
9	Dittolorroninolom	4.66	7.54	5.1	6.92	1.24	1.54
D	г иналауашраюш	-2.16	-2.74	-2.25	-2.61	-1.11	-1.24
L	Nacaron	5.21	7.86	5.3	66.9	1.72	1.96
-	IN agai aiti	-2.28	-2.8	-2.3	-2.63	-1.31	-1.4
ð	Volumenu	3.62	4.24	5.04	99:9	0.76	1.15
0	Nakullallu	-1.9	-2.06	-2.24	-2.58	-0.87	-1.05
0	Vottichambrum	4.04	5.82	5.44	7.16	1.22	1.72
r	A ditivity trant u	-2.01	-2.41	-2.33	-2.68	-1.1	-1.31
10	Dadamandin adu	4.44	6.26	6.82	8.66	0.46	1.32
10	r cuananuip auu	-2.11	-2.51	-2.61	-2.94	-0.68	-1.15
	Moon	4.63	5.96	6.3	7.85	76.0	1.51
		-2.14	-2.43	-2.5	-2.78	-0.97	-1.2
	t cal	£**	.47	*1.	93	Z**	.46
P	-value	.0>	01	0.0	3	0.0	1
Values in th	ie parenthesis are	sqrt transformed val	lues. **Significant a	t 1% level of signific	ance * Significant a	t 5% level of signific:	ance

Table 1. Survey conducted on infestation of BPH in rice crop in Guntur district during kharif 2019

reported that highest mean population of spiders were recorded in transplanting method (0.90/hill). Ashrith *et al.* (2017) who reported that the leaf folder damage

was more in direct seeded rice than the transplanted rice.

6]	
20	
rif	
hai	
5	
iņ	
qm	
Ċ	
itri	
dis	
'n	
Int	
G	
in	
de	
CL	
Ce	
.9	
Ηd	
B	
5	
J	
n of	
tion of	
tation of	
estation of	
infestation of	
on infestation of	
ed on infestation of	
cted on infestation of	
ducted on infestation of	
onducted on infestation of	
⁷ conducted on infestation of	
vey conducted on infestation of	
irvey conducted on infestation of	
Survey conducted on infestation of	
2. Survey conducted on infestation of	
le 2. Survey conducted on infestation of	
able 2. Survey conducted on infestation of	

				No. of WB	PH per hill		
S. No.	Name of the mandal	Activ	ve tillering stage	Panicle In	tiation stage	Har	vesting stage
		Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice
-	Ban at la	2.62	2.7	2.82	3.32	0.35	0.5
-	princhard	-1.62	-1.64	-1.68	-1.82	-0.58	-0.69
ç	Dome	2.04	3.12	4.04	3.56	0.49	0.4
4	L UIIIU	-1.43	-1.77	-2.01	-1.89	-0.69	-0.63
~	Varlandam	1.9	2.96	4.12	3.64	0.41	0.0
n	Naliapatelli	-1.38	-1.72	-2.03	-1.91	-0.64	-0.95
V	Chosen Lansalli	2.06	3.56	2.96	3.44	0.43	0.56
+	CIRCIMPUT	-1.44	-1.89	-1.72	-1.85	-0.65	-0.71
¥	A smooth of 11sts	2.56	3.24	3.16	3.7	0.54	0.42
n	Amalulatu	-1.6	-1.8	-1.78	-1.92	-0.73	-0.65
9	Dittolormain alam	2.18	3.52	3.7	3.86	0.38	0.46
0	L ILLAIAVAIII DAICIII	-1.48	-1.88	-1.92	-1.96	-0.62	-0.68
L	Manan	1.84	2.9	3.3	3.78	0.3	0.38
	Inagatati	-1.36	-1.7	-1.82	-1.94	-0.55	-0.62
0	Valuation	2.76	2.92	3.66	4.02	0.58	0.62
0	Nakullalu	-1.66	-1.71	-1.91	-2	-0.76	-0.79
c	Vottichomilium	2.46	3.46	3.42	4.24	0.32	0.48
n		-1.57	-1.86	-1.85	-2.06	-0.57	-0.68
10	Dadamandin adu	1.96	3.1	3.5	3.98	0.62	0.78
01	1 maintann ann	-1.4	-1.76	-1.87	-1.99	-0.79	-0.88
	Moon	2.23	3.14	3.45	3.75	0.45	0.51
	МСан	-1.49	-1.77	-1.85	(1.93	-0.65	0.72
	t cal		**6.44	[**	.86	[*	1.70
H	-value		<0.01	0	03	0	.05
Values in the	parenthesis are so	Irt transformed values.	**Significant at 1% level of	significance * Significa	nt at 5% level of signifi	cance	

-
5
-
<u> </u>
×.
5
- C '
- 2
2
2
2
•=
- H
_
· U
÷
ు
•
÷.
.0
-
L,
1
7 8
Ċ
_
g
• =
_
0
5
ت
e e e
<u> </u>
-
D
.=
1
<u> </u>
р
_
0
[0]
[fo]
af fo
eaf fo
leaf fo
[leaf fo]
of leaf fo
of leaf fo
n of leaf fo
on of leaf fo
on of leaf fo
tion of leaf fo
ntion of leaf fo
ation of leaf fo
station of leaf fo
station of leaf fo
estation of leaf fo
destation of leaf fo
nfestation of leaf fo
infestation of leaf fo
n infestation of leaf fo
on infestation of leaf fo
on infestation of leaf fo
1 on infestation of leaf fo
ed on infestation of leaf fo
ed on infestation of leaf fo
sted on infestation of leaf fo
cted on infestation of leaf fo
ucted on infestation of leaf fo
Jucted on infestation of leaf fo
nducted on infestation of leaf fo
nducted on infestation of leaf fo
onducted on infestation of leaf fo
conducted on infestation of leaf fo
⁷ conducted on infestation of leaf fo
y conducted on infestation of leaf fo
ey conducted on infestation of leaf fo
vey conducted on infestation of leaf fo
rvey conducted on infestation of leaf fo
irvey conducted on infestation of leaf fo
urvey conducted on infestation of leaf fo
Survey conducted on infestation of leaf fo
Survey conducted on infestation of leaf fo
3. Survey conducted on infestation of leaf fo
3. Survey conducted on infestation of leaf fo
e 3. Survey conducted on infestation of leaf fo
ole 3. Survey conducted on infestation of leaf fo
ble 3. Survey conducted on infestation of leaf fo
able 3. Survey conducted on infestation of leaf fo
Table 3. Survey conducted on infestation of leaf fo

				No. of lar	vae ner hill		
						-	
S. No.	Name of the mandal	Active till	ering stage	Panicle In	itiation stage	Harvesti	ig stage
		Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice
-	e	0.53	0.63	0.65	0.72	0.29	0.21
-i	Dapaua	(0.73)	(0.77)	(0.81)	(0.85)	(0.54)	(0.46)
,		0.65	0.45	0.83	0.41	0.25	0.12
7	ronnur	(0.81)	(0.67)	(0.91)	(0.64)	(0.50)	(0.35)
ç	V adamtan	86.0	0.35	0.42	0.30	0.19	0.15
'n	Nariapatem	(0.97)	(0.59)	(0.65)	(0.55)	(0.44)	(0.39)
-	:1	1.27	0.85	1.31	0.92	0.24	0.18
1	Cnerukupalli	(1.11)	(0.92)	(1.14)	(0.96)	(0.49)	(0.42)
.		0.72	0.61	0.85	09.0	0.14	60.0
Ċ.	Amarunaluru	(0.85)	(0.78)	(0.92)	(0.78)	(0.42)	(0.31)
	Dittalamation	1.10	0.83	0.92	0.49	0.26	0.22
o.	Fittalavanipalem	(1.05)	(0.91)	(96.0)	(0.70)	(0.51)	(0.47)
t	11	0.95	0.43	1.21	0.63	0.28	0.14
	Nagaram	(0.97)	(0.66)	(1.10)	(0.79)	(0.53)	(0.37)
c		1.22	0.71	0.95	0.69	0.18	0.24
ò	Nakumanu	(1.10)	(0.84)	(0.97)	(0.84)	(0.42)	(0.49)
6	Wattichandrum	0.77	0.41	66.0	0.79	0.20	0.06
	V attrictict ukut u	(0.88)	(0.64)	(66.0)	(0.89)	(0.45)	(0.28)
01	-1-u	0.96	0.89	1.29	1.03	0.23	0.19
10.	reamanaipaau	(0.97)	(0.93)	(1.14)	(1.01)	(0.48)	(0.44)
	Merry	06.0	09.0	1.02	0.71	0.21	0.14
	меан	(0.94)	(0.77)	(1.01)	(0.84)	(0.47)	(0.35)
	t cal	**	3.01	**	2.36	**3	16
	P-value	♥	.01		.01	<0>	1
		-					

2022

Table 4. Per cent leaf damage by leaf folder in rice crop in rice crop Guntur district during kharif 2019

				Per cent of	leaf damage		
S. No.	Name of the	Active tille	ring stage	Panicle Init	iation stage	Harvesti	ng stage
	mandal	Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice
	r Z	5.00	2.52	1.96	1.44	1.38	0.78
	Bapatla	(12.65)	(8.98)	(7.92)	(6.79)	(6.65)	(2:00)
		3.98	1.98	2.60	1.5	1.96	1.16
7.	Fomur	(11.29)	(96)	(9.17)	(6.93)	(7.92)	(60.9)
,	Valandam	4.62	1.84	2.58	1.22	2.58	1.82
Ċ.	Nariapatem	(12.16)	(7.67)	(60.6)	(6.25)	(6.09)	(7.63)
	:= 	5.54	3.72	3.02	2.44	1.72	0.66
,	Cnerukupalli	(13.32)	(10.91)	(9.83)	(8.84)	(7.42)	(4.60)
.		3.34	2.90	1.70	1.91	2.60	0.92
ċ	Amartnaluru	(10.34)	(9.63)	(7.38)	(7.80)	(9.12)	(5.43)
		4.22	2.72	1.84	1.38	2.42	1.9
0.	Fittalavampalem	(11.62)	(9.33)	(7.67)	(6.65)	(8.80)	(7.80)
r	N	4.12	2.44	2.64	1.86	1.92	1.32
	Nagaram	(11.58)	(8.84)	(6.19)	(7.72)	(7.84)	(6.50)
o	Valena	4.28	3.30	2.66	1.30	2.64	0.0
ò	Nakumanu	(11.64)	(10.28)	(9.23)	(6.45)	(9.19)	(5.37)
0	1	3.38	2.78	2.46	2.04	1.30	1.04
у.	v aulcherukuru	(10.40)	(9.43)	(8.87)	(8.08)	(6.45)	(5.77)
10	Dadamadinadin	5.44	3.84	2.88	1.32	1.10	0.94
10.	reualiallulpauu	(13.20)	(11.09)	(0.60)	(6.45)	(5.93)	(5.48)
	Maan	4.37	2.80	2.43	1.63	1.96	1.14
	INICAL	(11.78)	(9.41)	(8.79)	(61.7)	(7.84)	(5.96)
	t cal	* **	.88	5 **	.21	£**	.68
	P-value	-0>	01	9	01	. 0	01
		_					

Values in the parenthesis are arc transformed values. **Significant at 1% level of significance * Significant at 5% level of significance

6
—
<u> </u>
2.1
.5
-
3
<u> </u>
N
50
- F
.=
· 🖸
_
0
÷
ు
5
•
70
Ē
R
T
n
7 A
Ú
_
.8
•=
പ
- 6
- Z
5
<u> </u>
_ <u>_</u>
.с
•=
. Ξ
÷
at
lat
ulat
pulat
pulat
opulat
populat
g populat
ig populat
ug populat
bug populat
1 bug populat
id bug populat
rid bug populat
irid bug populat
nirid bug populat
mirid bug populat
n mirid bug populat
on mirid bug populat
on mirid bug populat
d on mirid bug populat
ed on mirid bug populat
ted on mirid bug populat
cted on mirid bug populat
ucted on mirid bug populat
ducted on mirid bug populat
nducted on mirid bug populat
nducted on mirid bug populat
onducted on mirid bug populat
conducted on mirid bug populat
y conducted on mirid bug populat
ey conducted on mirid bug populat
vey conducted on mirid bug populat
rvey conducted on mirid bug populat
irvey conducted on mirid bug populat
urvey conducted on mirid bug populat
Survey conducted on mirid bug populat
. Survey conducted on mirid bug populat
5. Survey conducted on mirid bug populat
2. Survey conducted on mirid bug populat
le 5. Survey conducted on mirid bug populat
ble 5. Survey conducted on mirid bug populat
able 5. Survey conducted on mirid bug populat
lable 5. Survey conducted on mirid bug populat

				No. of miric	l bugs per hill		
S. No.	Name of the	Active tille	ring stage	Panicle Initia	ntion stage	Harvesti	ng stage
	mandal	Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice	Direct seeded rice	Transplanted rice
-	- F	3.82	4.24	0.00	1.70	1.00	0.00
-	Bapaua	(1.95)	(2.06)	(0.95)	(1.30)	(1.00)	(0.95)
	l)	1.84	3.82	1.15	1.53	0.52	1.00
7.	romur	(1.36)	(1.95)	(1.05)	(1.22)	(0.72)	(1.00)
,	Vadandan	5.42	6.04	0.84	2.03	0.95	1.20
Ċ.	Nariaparen	(1.82)	(1.89)	(0.92)	(1.43)	(0.97)	(1.08)
-	Chandrand 11:	3.32	3.56	0.76	2.10	0.55	1.04
,	CITETUKUPALIT	(1.31)	(1.56)	(0.87)	(1.45)	(0.69)	(1.02)
4	A second for liver.	3.54	3.93	1.32	1.91	0.82	1.22
Ċ.	Amarutaturu	(1.88)	(1.97)	(1.14)	(1.38)	(0.91)	(1.10)
2	Dittalarminalam	3.91	4.64	1.76	2.09	0.64	1.08
0	гиалауалпрают	(1.97)	(2.15)	(1.33)	(1.45)	(0.80)	(1.04)
г	Macana	2.52	3.24	1.12	1.86	0.44	0.58
	Inagaram	(1.59)	(1.80)	(1.06)	(1.36)	(0.66)	(0.76)
0	Volmman	3.10	4.42	1.53	2.66	1.04	1.12
ò	Nakullallu	(1.76)	(2.10)	(1.22)	(1.63)	(1.02)	(1.06)
c	Wottichomorphism	2.64	3.84	1.46	2.04	0.76	0.84
<i>.</i>	v aulcherukuru	(1.62)	(1.96)	(1.21)	(1.43)	(0.87)	(0.92)
10	Dodonondinodu	2.54	3.12	1.26	2.24	0.96	1.02
10.	reuananupauu	(1.60)	(1.76)	(1.12)	(1.50)	(0.98)	(1.01)
	W	2.18	3.6	1.20	1.92	0.67	0.88
	меан	(1.66)	(1.91)	(1.08)	(1.37)	(0.80)	(0.93)
	t cal	**2.	.35	**4	5	*	.7
	P-value	0.0	11	9.0>	1	0.0	5

9
Ξ
ล
ij
л
Ą
×
<u>6</u>
-8
3
þ
t
Ξ.
st
di.
Ĕ
Ξ
Ĩ
2
G
d
2
<u>с</u>
ະ
Ē
R
5
Ē
la
Z
5
đ
H
ď
S
g
2
eq
Ē
Ē.
p
చ
Ň
Ă
H
S
e C
Ĭ
at
H

				No. of spide	stress stre stress stress stre		
S. No.	Name of the	Active tiller	ring stage	Panicle initi	ation stage	Harvesti	ing stage
	mandal	Direct seeded rice	Transplanted	Direct seeded rice	Transplanted	Direct seeded rice	Transplanted
			rice		rice		rice
-	Daractia	0.32	0.36	0.91	0.96	1.26	1.66
H	Dapaua	(0.57)	(0.60)	(0.95)	(0.98)	1.12	(1.29)
, ,	Deserve	0.48	0.52	1.13	06.0	1.44	1.5
7	romu	(0.69)	(0.72)	(1.05)	(0.95)	(1.20	(1.22)
,	Valandam	0.36	0.64	0.49	0.70	1.30	1.1
	nariapatem	(0.60)	(0.80)	(0.68)	(0.84)	(1.14)	(1.05)
	Classical 11:	0.54	0.56	0.78	0.84	0.66	0.84
,	Cnerukupalli	(0.73)	(0.75)	(0.88)	(0.92)	(0.81)	(0.92)
4	A anometical	0.58	0.72	1.06	1.02	0.92	0.80
ò.	Amarunaluru	(0.76)	(0.85)	(1.03)	(1.01)	(0.96)	(0.89)
	Dittelanniantan	0.64	0.59	0.44	0.88	0.88	1.70
0	rınalavampalem	(0.80)	(0.76)	(0.66)	(0.94)	(0.92)	(1.30)
г	Nacana	0.52	0.84	1.12	1.32	0.82	1.38
	INagaram	(0.72)	(0.92)	(1.06)	(1.15)	(0.95)	(1.17)
a	V	0.24	0.76	0.62	0.72	0.70	1.04
ò	Nakumanu	(0.49)	(0.87)	(0.72)	(0.85)	(0.84)	(1.02)
-	17-44-54	0.56	0.48	0.96	1.04	0.98	1.36
у.	v autenerukuru	(0.75)	(0.69)	(86.0)	(1.02)	(0.96)	(1.37)
10	Dadamadinadin	0.82	0.86	0.52	0.93	1.50	1.62
10.	reuananupauu	(0.91)	(0.93)	(0.68)	(0.95)	(1.22)	(1.27)
	Moon	0.50	0.63	0.78	0.92	1.12	1.30
	ТАТСАП	(0.70)	(0.78)	(0.86)	(0.95)	(0.89)	(1.16)
	t cal	*1.6	8	*1,	11	**	3.2
	P-value	0.0	2	0.0	4	Ø	.01

9	
-	
0	
$\overline{\mathbf{A}}$	
è."	
5	
a	
2	
2	
-	
E C	
•	
5	
•Ħ	
-	
÷	
<u> </u>	
0	
H	
-	
g	
<u>_</u>	
C	
-	
• =	
0	
9	
- H	
0	
L)	
- Ū	
• H	
1	
.=	
0	
ion	
ition	
lation	
lation	
ulation	
pulation	
opulation	
Population	
Population	
d Population	
lid Population	
llid Population	
ellid Population	
nellid Population	
inellid Population	
cinellid Population	
ccinellid Population	
occinellid Population	
coccinellid Population	
1 coccinellid Population	
on coccinellid Population	
on coccinellid Population	
d on coccinellid Population	
ed on coccinellid Population	
ted on coccinellid Population	
cted on coccinellid Population	
acted on coccinellid Population	
lucted on coccinellid Population	
iducted on coccinellid Population	
nducted on coccinellid Population	
onducted on coccinellid Population	
conducted on coccinellid Population	
r conducted on coccinellid Population	
y conducted on coccinellid Population	
ey conducted on coccinellid Population	
vey conducted on coccinellid Population	
rvey conducted on coccinellid Population	
urvey conducted on coccinellid Population	
Survey conducted on coccinellid Population	
Survey conducted on coccinellid Population	
7. Survey conducted on coccinellid Population	
7. Survey conducted on coccinellid Population	
le 7. Survey conducted on coccinellid Population	
ole 7. Survey conducted on coccinellid Population	
uble 7. Survey conducted on coccinellid Population	
Pable 7. Survey conducted on coccinellid Population	

				No. of cocci	nellids per hill		
S. No.	Name of the	Active tille	ring stage	Panicle initia	ation stage	Harvesti	ng stage
	mandal	Direct seeded rice	Transplanted	Direct seeded rice	Transplanted	Direct seeded rice	Transplanted
			rice		rice		rice
-	Danatio	0.26	0.50	0.54	0.82	0.96	1.02
	Dapaua	(0.51)	(0.69)	(0.73)	(0.91)	(0.98)	(1.01)
ŗ	Docertee	0.22	0.68	0.66	0.74	1.12	1.21
7	romu	(0.47)	(0.72)	(0.81)	(0.86)	(1.06)	(1.10)
2	Varlandam	0.28	0.58	0.51	0.79	0.84	96.0
Ċ.	Naliapatelli	(0.53)	(0.71)	(0.71)	(0.89)	(0.92)	(0.98)
-	Chomicalities	0.46	0.42	0.71	0.87	0.86	1.04
.	Cherukupani	0.68)	(0.64)	(0.87)	(0.91)	(0.93)	(1.02)
v	A mostholium.	0.56	0.94	0.78	0.93	0.80	0.84
.c	Amarutaturu	(0.75)	(0.97)	(0.88)	(0.92)	(0.88)	(0.92)
9	Dittalarraninalam	0.40	0.46	1.02	1.11	0.94	0.98
0	r Iualavallipalelli	(0.60)	(0.66)	(1.01)	(1.05)	(0.97)	(0.99)
Ľ	Norm	0.32	0.38	09.0	0.64	1.20	1.32
	INagaram	(0.57)	(0.62)	(0.78)	(0.80)	(1.12)	(1.15)
0	Volumoni	0.38	0.34	0.52	0.58	0.72	1.16
ò	Nabullaliu	(0.62)	(0.58)	(0.72)	(0.76)	(0.85)	(1.08)
o	Wottichomilinus	0.50	0.75	0.64	0.72	0.76	0.92
	V atticiticitututu	(0.71)	(0.87)	(0.80)	(0.85)	(0.87)	(0.96)
10	Dadamadinadu	0.30	0.78	0.85	0.98	1.04	1.10
10.	генацалиграни	(0.60)	(0.88)	(0.92)	(0.96)	(1.02)	(1.04)
	Maan	0.37	0.54	0.67	0.79	0.95	1.14
	INTERIL	(09.0)	(0.72)	(0.81)	(0.88)	(0.97)	(1.06)
	t cal	Z**	.44	*1.8	12	*1.	77
	P-value	0.0	1	0.0	4	0.0	13

LITERATURE CITED

- Ashrith K N, Sreenivas AG, Guruprasad G S and Hanchinal S G 2017. Insect diversity: A comparative study in direct seed and transplanted rice ecosystem. *Journal of Entomology and Zoology Studies*. 5 (6): 762-765.
- Ashrith K N, Sreenivas A G, Guruprasad G S, Hanchinal S G and Krishnamurthy D 2016. Status of insect pests and natural enemies of direct seeded and transplanted rice. *Mapana Journal of Sciences*. 14 (4): 11-29.
- Edirisinghe J P, Bambaradeniya C N B 2006. Rice Fields: An ecosystem rich in biodiversity, Journal of National Sciences Foundation of Srilanka. 34(2):57-59.
- Girish V P, Hegde M G and Balikai R A 2015. Population dynamics of insect predators under different planting methods of paddy ecosystem. *Journal of Experimental Zoology*. 18 (1): 249-251.

- Krishnaiah N V, Varma N R G 2015. Changing the Insect Pest Scenario in the Rice Ecosystem - A National Perspective. IRRI Book. 31-42.
- Muralidharan K, Pasalu I C 2005. Crop losses in rice ecosystems due to Gall Midge. *Indian Journal of Plant Protection*; 33(1):11-16.
- Parasappa H H, Narasa Reddy G, Avinash T G and Thara K T 2017. Seasonal abundance of rice sucking pests under different rice ecosystems in Cauvery command areas of Karnataka. Journal of Pharmacognosy and Phytochemistry. 6 (5): 1645-1648.
- Rai K, Sinha R B P and Singh A K 2000. Effect of an abiotic factor on the population of the rice leaf folder. Annals of Plant Protection Science. (8):154-158.
- Shanmugam T R, Sendhil R and Thirumalvalavan V 2006. Quantification and prioritization of constraints causing yield loss in rice in India. Agricultura Tropicaet Subtropica. 39:194-201.

Received on 28.07.2022 and Accepted on 05.11.2022