

Drymatter and Yield of Rice - Ragi Sequence as Influenced by Nutrient Management Interventions

S Kiran Kumar, Ch Pulla Rao, V R K Murthy, Y Ashoka Rani and P R K Prasad

Department of Agronomy, ANGRAU, Lam, Guntur, A. P.

ABSTRACT

A field experiment entitled "Nutrient Management Interventions in Rice- Ragi Sequence" was conducted during *kharif* and *rabi* seasons of 2017-18 and 2018-19 on sandy loam soil of the Agricultural College Farm, Bapatla. The seven treatments consisted of T_1 : 100% RDF (100-60-40 kg N-P-K ha⁻¹); T_2 : 100% RDF+ Soil application of ZnSO₄ @ 50 kg ha⁻¹; T_3 : 125% RDF+ Soil application of ZnSO₄ @ 50 kg ha⁻¹; T_4 : 75% RDF+ Poultry manure @ 0.82 t ha⁻¹ + Soil application of ZnSO₄ @ 50 kg ha⁻¹; T_5 : 75% RDF+ FYM @ 5.0 t ha⁻¹ + Soil application of ZnSO₄ @ 50 kg ha⁻¹; T_6 : 50% RDF+ Poultry manure @ 1.6 t ha⁻¹+ Soil application of ZnSO₄ @ 50kg ha⁻¹ and T_7 : 50% RDF+ FYM @ 10 t ha⁻¹ + Soil application of ZnSO₄ @ 50 kg ha⁻¹. The experiment was laid out in Randomized Block Design with seven treatments and replicated thrice during *kharif* rice and in *rabi* each *kharif* treatment was sub divided into four sub treatments (S₁:no fertilizer, S₂: 100% RDF, S₃: 75% RDF and S₄: 50% RDF) and hence, split plot design was adopted in *rabi*. Total number of plots per replication in the *rabi* was 28 (7x4= 28). Among all the *kharif* treatments, T_7 recorded the maximum drymatter (12183, 12538 and 12360 kg ha⁻¹) and grain yield (5343, 5465 and 5404 kg ha⁻¹) in rice. While during *rabi*, the treatment S₂: 100% RDF recorded the maximum drymatter (5434, 5417 and 5425 kg ha⁻¹) and grain yield (1935, 2038 and 1986 kg ha⁻¹) of ragi during both the years of study.

Keywords: Drymatter, Grain yield, Nutrient Management Interventions, Rice-Ragi sequence.

Rice (Oryza sativa L.) is the most important cereal crop in the world and is the staple food of over half the world's population. It is generally considered as semi-aquatic annual grass. Finger millet (Eleusine coracana. L.) is an important dryland millet crop and ranks third in importance among millets in India, after sorghum and pearlmillet. Ragi being a C₄ plant, has higher productivity among the small millets and is a supplemental food for diabetic patients instead of regular food as it can reduce sugar levels in blood and urine because it has low glycemic index. Excess use of fertilizer nutrients implies increase of cost and decrease of returns and risk of environmental pollution. Application of inadequate and unbalanced fertilization to crops not only results in low crop yields but also deteriorate the soil health. Soil organic matter is the key to soil fertility and productivity. The beneficial influence of organic matter on the physical, chemical and biological properties of the soil is well known, the full appreciation of the same remains, which is unfortunately ignored in modern agriculture. The regular recycling of organic wastes in the soil is the most efficient method of maintaining optimum levels of soil organic matter. In the conventional agriculture, which is followed over generations in India, the use of plant and animal wastes as a source of plant nutrients is a well known practice. The importance and aim of organic manures and green manure crops have failed to be recognized in modern agriculture.

MATERIAL AND METHODS

The present investigation was conducted at Agricultural College Farm, Bapatla. It is located in coastal region of Krishna Agroclimatic Zone of Andhra Pradesh. The soil was sandy loam in texture, slightly alkaline in reaction, low in organic carbon, available nitrogen and available phosphorus but medium in available potassium. The trial was laid out in a Randomized block design with seven treatments in kharif rice and in rabi it was modified to split plot design replicated thrice. The seven treatments consisted of T₁: 100% RDF (100-60-40 kg N-P-K ha⁻¹); T₂: 100% RDF+ Soil application of $ZnSO_4 @ 50 kg ha^{-1}$; T₃: 125% RDF+ Soil application of ZnSO₄ @ 50 kg ha⁻¹; T₄: 75% RDF+ Poultry manure @ 0.82 t ha⁻¹ + Soil application of $ZnSO_4$ @ 50 kg ha⁻¹ ¹; T₅: 75% RDF+ FYM @ 5.0 t ha⁻¹ + Soil application of $ZnSO_4$ @ 50 kg ha⁻¹; T₆: 50% RDF+ Poultry manure @1.6 t ha⁻¹+ Soil application of ZnSO₄ @ 50kg ha⁻¹ and T_7 : 50% RDF+ FYM @ 10 t ha⁻¹+ Soil application of ZnSO₄ @ 50 kg ha⁻¹. In *rabi* each *kharif* treatment was divided into four sub treatments (S₁:no fertilizer, S_2 : 100% RDF, S_2 : 75% RDF and S_4 : 50% RDF) and the design was changed to split plot design. For drymatter accumulation, five successive plants were sampled at 30, 60, 90 DAT and at harvest in rice and 30, 60, 90 DAS and at harvest in ragi. The mean dry weight was multiplied by number of plants ha⁻¹ and expressed in kg ha-1. For grain yield recording, cleaning of the threshed grain was done and then dried in sun to a constant weight in order to record final yield. Grain yield from the labelled hills were also added to the corresponding plot yields before expressing the final grain yield in kg ha⁻¹. Straw yield from the net plot of each treatment was dried in Sun to a constant weight. The data was analyzed by adopting Panse and Sukhatme (1978) standard procedures.

RESULTS AND DISCUSSION Drymatter Production

Data on drymatter production at different growth stages of rice and ragi crop are presented in table 1 & 2. At 30 DAT of rice and 30 DAS of ragi drymatter production was low, but as the crop growth advanced, it increased linearly upto maturity and thereafter exhibited with decreasing rate. However, at harvest it was maximum in both the crops during the two years of study. Application of 50 % RDF + FYM @ 10 t ha⁻¹ + ZnSO₄ @ 50 kg ha⁻¹ recorded the highest drymatter production consistently at 30 DAT, 60 DAT, 90 DAT and at harvest stages of kharif rice but it was statistically on par with T₃ *i.e.*, 125% RDF. In rabi ragi, the residual fertility and fertiliser levels had a significant influence on the drymatter production. Among the fertilizer levels S_2 (100% RDF) recorded significantly the highest drymatter production of ragi in both the years of study and in pooled data. The increase in drymatter production under INM practices could be attributed to uninterrupted supply of available nutrients from inorganic and organic sources through mineralization and decomposition process, it implies a stimulatory effect of organic manures application in conjunction with chemical fertilizer on drymatter production capacity of rice. The increase in drymatter production in all the growth stages with T_{τ} treatment might be due to addition of organic manure along with inorganic fertilizers, which was responsible for slow release of nutrients. These are available for longer period throughout the life span of the crop. These also might have enhanced the photosynthetically important physiological traits *i.e.* leaf number and vegetative growth of the plant. The higher drymatter production recorded in ragi might be due to the combination of inorganic and organic sources of nutrients as residual effect which might also had synergistic and additive effect on drymatter production. However, adequate supply of chemical fertilizers in rabi accelerated the growth of ragi which may have increased the fertilizer use efficiency of the crop as well as soil fertility by promoting soil microbial activities in narrowing down the C: N ratio. These nutrient dynamics inturn might have resulted in longer duration of availability of the nutrients throughout the crop growth period. These results are in agreement with those findings of Pradhan and Moharana, (2015), Kandeshwari and Thavaprakash, (2016), Regar and Yadav, (2017), Neelam *et al.* (2009) and Kumar *et al.* (2017)

Grain and Straw Yield

Significantly the highest grain yield (5343 kg ha⁻¹) was recorded with 50% recommended dose of inorganic fertilizers + FYM 10 t ha⁻¹ + ZnSO₄ @ 50 kg $ha^{-1}(T_{7})$ over the other treatments. However, it was found statistically on par with 125 % RDF + $ZnSO_4$ @ 50 kg ha⁻¹ i.e. T_{2} (4881 kg ha⁻¹) which was significantly superior to the remaining treatments during the first year of study. In the second year also, significantly the highest grain yield was recorded with T_{γ} (50%) RDF+ FYM 10 t ha⁻¹ + ZnSO₄ @ 50 kg ha⁻¹) i.e., 5465 kg ha⁻¹. This treatment was followed by T_3 (125% RDF + $ZnSO_{4}$ @ 50 kg ha⁻¹) i.e. 5021 kg ha⁻¹. Significantly the highest straw yield (6089 kg ha⁻¹) was recorded with the application of 50% RDF+ FYM 10 t ha^{-1} + $ZnSO_4 @ 50 \text{ kg ha}^{-1} (T_7)$ followed by $T_3 (125\% \text{ RDF})$ + $ZnSO_4$ @ 50 kg ha⁻¹) i.e. 5696 kg ha⁻¹ in the first year of study. In the second year of study also almost similar trend was noticed.

Grain yield of no till ragi under residual effect, distinctintly the highest grain yield of ragi with T_7 (1823 kg ha⁻¹), which was followed by T_6 (1735 kg ha⁻¹). The treatment T_4 and T_5 was on par with each other. The treatments $T_{1,}$ T_2 and T_3 were also on par with each other. In the second year of experimentation, the highest grain yield of ragi was recorded with T_7 (1880 kg ha⁻¹), which was statistically on par with T_6 (1857 kg ha⁻¹) and it was superior to other treatments as indicated in pooled data.

Among the different fertilizer levels tried in ragi, S_2 (1935 kg ha⁻¹) recorded significantly the highest grain yield. This was followed by S_3 (1647 kg ha⁻¹). The treatment, S_3 (1647 kg ha⁻¹) was found to be superior to S_4 (1583 kg ha⁻¹) and S_1 (1393 kg ha⁻¹) which received 50 % RDF and No fertilizer, respectively.

The data pertaining to straw yield under no till ragi maintained significantly the highest straw yield of ragi was recorded with T_7 (2760 kg ha⁻¹), which was followed by T_5 (2517 kg ha⁻¹). The treatments T_6 and T_5 remained on par with each other. Treatments T_4 (2438 kg ha⁻¹), T_3 (2426 kg ha⁻¹) and T_2 (2340 kg ha⁻¹) remained statistically identical with one another. Similar trend was noticed in the second year of experimentation. The pooled data confirmed the same trend.

Among the different fertilizer levels tried in ragi, treatment S_2 (3030 kg ha⁻¹) recorded significantly the highest straw yield and this was followed by S_3 (2385 kg ha⁻¹). The treatments S_3 and S_4 (2392 kg ha⁻¹) remained statistically on par with one another, which

		2(2017			2(2018			Pool	Pooled data	
Treatment	30	09	06	Harvest	30	60	06	Harvest	30	60	06	Harvest
	DAT	DAT	DAT		DAT	DAT	DAT		DAT	DAT	DAT	
$T_{1:100\%}$ RDF	1019	3024	6632	8884	1052	3143	6738	9742	1036	3083	6685	9313
T_2 :100% RDF+ ZnSO ₄	2101	0100			<i>L L L L</i>	1100	0112	7000	0201	1100	0202	0501
(a) 50 kg ha ⁻¹	C171	3 <u>9</u> 48	6660	1176	C+C1	3 941	/119	9880	12/9	<u> </u>	6CU/	1866
$T_3: 125\%$ RDF+ ZnSO4 @	1646	4789	7951	11135	1734	5005	8074	11580	1690	4897	8012	11357
50 kg ha^{-1}												
T4: 75% RDF+ PM @												
$0.82 \text{ tha}^{-1} + \text{ZnSO}_4 \otimes 50$	1313	4093	6916	9558	1490	4263	7172	10086	1401	4178	7044	9822
kg ha ⁻¹												
T5: 75% RDF+ FYM @												
$5.0 \text{ t ha}^{-1} + \text{ZnSO}_4 (\underline{a}) 50 \text{ kg}$ 1402	1402	4414	7097	9800	1594	4516	7306	10438	1498	4465	7201	10119
ha ⁻¹												
$T_6: 50\%$ RDF+ PM @1.6		6277										
t ha ⁻¹ + ZnSO ₄ @ 50kg ha ⁻¹	1328	4461	/042	9842	C0C1	40/4	1290	1024	1447	400/	/169	10218
$T_{7:}$ 50% RDF+ FYM @ 10					2000	0001				0002		
t ha ⁻¹ + ZnSO ₄ \textcircled{a} 50 kg ha ⁻¹	1883	5074	8549	12183	2027	5332	8829	12538	cc91	5203	8689	12360
$S.Em \pm$	146.6	124.7	221.7	249.42	329.1	107	226	258.7	130.7	115.8	223.9	254
CD (P=0.05)	439.3	373.7	664.7	747.7	986.7	320.7	677.6	775.7	391.7	347.2	671.1	761.2
CV (%)	12.2	6.5	6.7	6.1	8.9	5.4	6.7	5.4	14.3	5.9	6.7	5.7

		201	7-18			20	18-19		Pooled data				
Reatment	30	60	90	Harvest	30	60	90	Harvest	30	60	90	Harvest	
	DAS	DAS	DAS		DAS	DAS	DAS		DAS	DAS	DAS		
Residual effect	of nutrie	ent interv	entions i	mposed to	kharif	rice							
T ₁	775	1542	3109	4240	876	1663	3277	4796	825	1602	3193	4518	
T ₂	810	1636	3231	4293	894	1789	3536	4804	852	1712	3383	4548	
T3	842	1697	3382	4402	939	1872	3632	4900	890	1784	3507	4651	
T4	839	1710	3513	4513	938	1852	3629	4897	888	1781	3571	4705	
T5	849	1785	3802	4543	969	1940	3735	5003	926	1862	3768	4773	
T ₆	874	1794	3740	4744	964	1891	3741	5009	919	1842	3740	4876	
T ₇	883	1895	3846	5154	1033	2020	3877	5145	941	1957	3861	5149	
SEm ±	11.1	25.8	49.95	59.145	14.14	30.11	60.07	84.648	12.61	27.95	55.01	71.89	
CD (p=0.05)	34.3	79.6	153.9	182.24	43.55	92.78	185.1	260.82	38.9	86.19	169.4	221.5	
CV (%)	8	7.5	7.6	8.6	6.9	8.6	9.2	10.3	7.4	8	8.4	9.4	
Fertilizer doses	applied	to ragi				-		-					
\mathbf{S}_1	753	1516	3081	3860	855	1675	3177	4538	804	1595	3129	4199	
S_2	1001	2014	4036	5434	1084	2112	4099	5417	1042	2063	4067	5425	
S ₃	844	1705	3548	4500	939	1861	3693	4961	891	1783	3620	4730	
S_4	814	1656	3406	4429	901	1796	3561	4829	857	1726	3483	4629	
SEm ±	10.7	21.19	40.24	74.53	10.58	21.31	38.84	50.84	10.64	21.24	39.54	62.6	
CD (p=0.05)	30.5	62.6	114.8	212.72	30.2	60.82	110.9	145.11	30.34	61.7	112.83	178.9	
CV (%)	8	9.2	6.2	8.6	8.1	8.3	5.8	7.9	8.05	8.75	6	8.2	
Interaction	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	

Table 2. Drymatter production (kg ha⁻¹) at different stages of no till *rabi* ragi as influenced by nutrient management interventions

Note:

T₁:100% RDF

 $T_2: 100\% \text{ RDF} + \text{ ZnSO}_4 @ 50 \text{ kg ha}^{-1}$

 T_{3}^{2} : 125% RDF+ ZnSO₄ @ 50 kg ha⁻¹

 T_4 : 75% RDF+ PM @ 0.82 t ha⁻¹ + ZnSO₄ @ 50 kg ha⁻¹

 T_5^{+} : 75% RDF+ FYM @ 5.0 t ha⁻¹ + ZnSO₄ @ 50 kg ha⁻¹ T_6^{-} : 50% RDF+ PM @ 1.6 t ha⁻¹ + ZnSO₄ @ 50kg ha⁻¹

 T_{7}° : 50% RDF+ FYM @ 10 t ha⁻¹+ ZnSO₄ @ 50 kg ha⁻¹

S₁: No fertilizer;

S₂: 100 % RDF (30-30-20 kg NPK ha⁻¹),

 S_{3}^{2} : 75 % RDF;

S₄: 50 % RD

Table 3. Grain and straw yields	(kg ha ⁻¹) of kharif r	rice as influenced by	nutrient management
interventions			

	(Grain Yie	ld	St	traw Yi	eld
Treatment	2017	2018	Pooled	2017	2018	Pooled
			data			data
T ₁ :100% RDF (100-60-40 kg NPK ha ⁻¹)	4036	4165	4100	4506	5112	4809
$T_2:100\%$ RDF+ ZnSO ₄ @ 50 kg ha ⁻¹	4162	4299	4230	4671	5115	4893
$T_3: 125\%$ RDF+ ZnSO ₄ @ 50 kg ha ⁻¹	4881	5021	4951	5696	6007	5851
T ₄ : 75% RDF+ PM @ 0.82 t ha^{-1} + ZnSO ₄ @ 50 kg ha ⁻¹	4253	4416	4334	4820	5190	5005
T ₅ : 75% RDF+ FYM @ 5.0 t ha ⁻¹ + ZnSO ₄ @ 50 kg ha ⁻¹	4319	4500	4409	4988	5441	5214
$T_6: 50\% RDF+ PM @ 1.6 t ha^{-1} + ZnSO_4 @ 50 kg ha^{-1}$	4360	4595	4477	4926	5494	5210
T ₇ : 50% RDF+ FYM @ 10 t ha ⁻¹ + ZnSO ₄ @ 50 kg ha ⁻¹	5343	5465	5404	6089	6476	6282
S.Em ±	173.1	118.9	146	163.8	145.9	154.8
CD (P=0.05)	519	356.8	437.9	490.2	437.5	463.8
CV (%)	8.6	10.4	9.5	7.7	8.2	7.9

Tractorent	Grain	yield	Pooled	Straw	yield	Pooled
Treatment	2017-18	2018-19	data	2017-18	2018-19	data
Residual effect of nutrient interventions impo	osed to kha	rif rice				
T ₁ :100% RDF	1529	1594	1561	2205	2465	2335
$T_2:100\%$ RDF+ ZnSO ₄ @ 50 kg ha ⁻¹	1542	1684	1613	2340	2617	2478
$T_3 : 125\% RDF + ZnSO_4 @ 50 kg ha^{-1}$	1573	1639	1606	2426	2571	2498
T ₄ : 75% RDF+ PM @ 0.82 t ha ⁻¹ + ZnSO ₄ @ 50 kg ha ⁻¹	1625	1711	1668	2438	2645	2541
T ₅ : 75% RDF+ FYM @ 5.0 t ha ⁻¹ + ZnSO ₄ @ 50 kg ha ⁻¹	1650	1765	1707	2517	2691	2604
$T_6: 50\%$ RDF+ PM @1.6 t ha ⁻¹ + ZnSO ₄ @ 50kg ha ⁻¹	1735	1857	1796	2616	2801	2708
T ₇ : 50% RDF+ FYM @ 10 t ha ⁻¹ + ZnSO ₄ @ 50 kg ha ⁻¹	1823	1880	1851	2760	2995	2877
S.Em ±	22.9	23.3	23.1	55.3	57.9	56.6
CD (P=0.05)	70.5	71.8	71.1	170.7	178.4	174.5
CV (%)	8.4	6.7	7.5	7.6	7.4	7.5
Fertilizer doses applied to ragi						
S ₁ : No Fertilizer	1393	1451	1422	2080	2236	2158
$S_2: 100 \% RDF (30-30-20 Kg NPK ha^{-1})$	1935	2038	1986	3030	3212	3121
S ₃ : 75 % RDF	1647	1751	1699	2385	2637	2511
S4: 50 % RDF	1583	1692	1637	2392	2649	2520
S.Em ±	17.3	19.1	18.2	49.4	60.7	55.05
CD (P=0.05)	49.3	54.4	51.8	141.1	173.3	157.2
CV (%)	12.3	11.1	11.7	9.1	10.3	9.7
Interaction	NS	NS	NS	NS	NS	NS

Table 4. Grain and straw yields of rabi ragi as influenced bynutreint management interventions

received 75 % RDF and 50% RDF respectively. Lower straw yield was recorded with S_1 (2080 kg ha⁻¹). Similar trends were observed in the second year of experimentation as well as in pooled data as that was reflected in first year of investigation.

Combined application of organics and inorganics leads to improved overall growth of the crop interms of drymatter production, morphological and photosynthetic components along with nutrient accumulation. This shows greater availability of nutrients and metabolites for growth and development of reproductive structures, which ultimately might have led to realization of higher productivity of individual plant. The highest grain and straw yields in both crops during both the years might be due to improvement in yield attributing characters *i.e.* number of productive tillers, test weight and number of filled grains per panicle. These results are in complete agreement with the findings of Jadhav *et al.* (2014), Parihar *et al.* (2015), Kumar *et al.* (2016), Premalatha and Angadi (2017) and Singh and Singh (2018), Apoorva *et al* (2010), Ahiwale *et al.*(2013), and Kumar *et al.* (2017) who reported similar findings.

CONCLUSION

Overall, it can be concluded that the highest drymatter, grain and straw yields of rice was recorded with the application of 50 % RDF + FYM 10 t ha⁻¹ along with 50 kg zinc sulphate per hectare as soil application and in *rabi* no till ragi, the same treatment recorded maximum drymatter, grain and straw yields as residual effect and in fertilizer levels, 100 % RDF recoded significantly the highest grain and straw yields.

LITERATURE CITED

- Ahiwale P H, Chavan L S, Jagtap D N, Mahadkar U K and Gawade M B 2013 Effect of establishment methods and nutrient management on yield attributes and yield of fingermillet (*Eleusine coracana* G.). Crop Research. 45 (1, 2 & 3): 141-145.
- Apoorva K B, Prakash S S, Rajesh N L and Nandini B 2010 STCR approach for optimizing integrated plant nutrient supply on growth, yield and economics of fingermillet (*Eleusine coracana* (L.) Gaertn). *European Journal of Biological Science*. 4 (1): 19-27.
- Jadhav K T. Lokhande D C and Asewar B V 2014 Effect of ferrous and zinc nutrient management practices on rice under aerobic condition. Advance Research Journal of Crop Improvement. 5 (2): 131-135.
- Kandeshwari M and Thavaprakaash N 2016 Influence of integrated nutrient management practices on yield and nutrient uptake in rice under system of rice intensification. International Journal of Agricultural Science and Research. 6 (2): 123-130.
- Kumar R, Zaidi S F A, Singh G, Kumar B and Nishad K K 2016 Effect of integrated nutrient management on yield and phosphorus availability of aromatic rice (*Oryza sativa* L.) in inceptisol of eastern U.P. Advance Research Journal of Crop Improvement. 7 (1): 145-147.
- Kumar S S, Kour S, Bhagat M S and Singh H 2017 Growth and yield performance of rice as influenced by different varieties and fertility levels under aerobic conditions. *Environment* & *Ecology*. 35 (2A): 906-909).

- Neelam A, Kumar A and Singh V P 2009 Effect of fertilizer application in conjunction with biofertililizers on growth and yield of pearl millet under rainfed condition. *Forage Research.* 35 (2): 121-123.
- Panse V G and Sukhatme P V 1978 Statistical methods for agricultural workers. Indian Council of Agricultural Research, New Delhi. 145-152.
- Parihar M, Kumar R M, Jat L K, Jatav H S 2015 Effect of inorganic fertilizers with and without FYM on yield, nutrient uptake and quality parameters of Rice (*Oryza sativa*). *Environment and Ecology*. 33 (4): 1480-1484.
- Pradhan S and Moharana S 2015 Effect of organic nutrient management on growth rate and crop productivity in sustainable rice-rice system. *Journal Crop and Weed.* 11 (2): 28-33.
- Premalatha B R and Angadi V V 2017 Influence of integrated nutrient management and Leaf Color Chart (LCC) based nitrogen management in rice (*Oryza sativa* L.) yield and yield attributes, nitrogen uptake and soil available nitrogen status. *Environment and Ecology.* 35 (3B): 2012-2020.
- Regar K L and Yadav J 2017 Influence of PGPR and zinc enriched FYM on growth and yield of rice at different levels of phosphorus in an inceptisol of Varanasi, India. *International Journal of Current Microbiology and Applied Sciences.* 6 (4): 1453-1464.
- Singh B and Singh A P 2018 Response of wheat (Triticum aestivum L.) to FYM and phosphorus application in alluvial soil. International Journal of Current Microbiology and Applied Sciences. 7 (6): 418-423.